登录社区云,与社区用户共同成长
邀请您加入社区
探索如何从自然语言提问创建地理空间搜索。在下面的示例中,我们将演示一个请求在地铁站或兴趣点周围一定半径内的 Airbnb 房源列表的问题。你可以将这一日常用例扩展到其他地理空间搜索,例如在指定区域内寻找餐馆、景点、学校和其他地方。我们提供了一本 [Jupyter Notebook],它将引导你完成设置数据集、将它们导入 Elasticsearch 以及设置生成式 AI 和 LLM 部分的过程。我们
随着 Elastic Cloud 提供可观察性、安全性和搜索等解决方案,我们将使用 Elastic Cloud 的用户范围从完整的运营团队扩大到包括数据工程师、安全团队和顾问。作为 Elastic 支持代表,我很乐意与各种各样的用户和用例互动。随着受众的扩大,我看到了更多关于管理资源分配的问题,特别是对分配健康状况进行故障排除和避免断路器的问题。我明白了!当我开始使用 Elasticsearc
BBQ)是中一种开创性的向量数据量化方法。它的核心目标是在提高向量数据压缩率的同时,维持高召回率,并提供自定义选项。其原理是通过巧妙地结合标量量化和位向量支持来实现这一目标。在实际的数据处理中,向量数据往往占据大量的存储空间。传统的量化方法可能会在压缩数据的过程中损失一定的准确性,导致搜索结果的召回率下降。而BBQ则打破了这种局限,它能够在不影响准确性的情况下,将向量数据的压缩率提高32倍。这对于
代码版本管理
Lucene 和 Elasticsearch 中更好的二进制量化 (BBQ)。嵌入模型输出 float32 向量,通常对于高效处理和实际应用来说太大。Elasticsearch 支持 int8 标量量化,以减小向量大小,同时保持性能。其他方法会降低检索质量,并且不适用于实际使用。
作为纯 Java 开发的软件,esProc SPL 可以完全无缝地集成进 Java 应用中,就和应用程序员自己写的代码一样,一起享受成熟 Java 框架的优势。这样可以做到业务逻辑的热切换,特别适合支持变化频繁的业务,而这也是 json 广泛应用的地方。很简单,esProc 提供了标准的 JDBC 驱动,被 Java 程序引入后,就可以使用 SPL 语句了,和调用数据库 SQL 一样。何况,jso
elasticsearch
——elasticsearch
联系我们(工作时间:8:30-22:00)
400-660-0108 kefu@csdn.net