
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文介绍了一个基于BERT+LSTM+CRF深度学习的医疗知识图谱问答可视化系统。该系统通过爬取医疗数据构建知识图谱,利用BERT进行语义理解,LSTM处理序列信息,CRF进行实体识别。系统采用Django框架开发Web端,使用Neo4j存储图谱数据,并通过Echarts实现可视化。开发流程包括环境配置、数据爬取与清洗、关系抽取、模型训练和可视化实现。该系统能有效支持医疗领域的智能问答和知识分析,

K-means聚类算法是一种常用的文本数据分析技术,通过对微博内容进行聚类,可以将相似主题或内容的微博归为同一类别,从而为用户提供更加个性化的新闻推荐服务。K-means聚类算法是一种无监督学习算法,其主要目标是将数据集中的样本划分为K个不同的簇,使得同一簇内的样本彼此相似度较高,而不同簇之间的样本相似度较低。在微博舆情分析系统中,我们可以将微博内容视作数据集中的样本,通过K-means算法将微博

Dify 是一个开源的大语言模型(LLM)应用开发平台,它致力于为开发者提供一站式、低代码甚至无代码的 AI 应用开发体验。Dify 核心目标是降低 AI 应用开发门槛,支持从原型设计到生产部署的全流程管理。Dify 拥有直观的可视化界面,开发者无需深入底层代码,只需通过简单的拖拽、配置操作,就能定义应用的 Prompt(提示词)、上下文以及各种插件。

多模态学习是AI从单一感知迈向综合理解的关键技术,通过融合视觉、听觉、文本等多种数据形式,使计算机能够像人类一样全面认知世界。文章梳理了多模态学习的发展历程,从早期的符号计算到深度学习时代,重点介绍了CLIP、Flamingo等突破性模型。多模态技术已在医疗、教育、电商等领域实现300%的应用增长,其核心任务包括多源数据分类、情感分析和跨模态匹配。随着80%的企业AI应用将依赖多模态技术,该领域正

本文详细介绍了一个基于知识图谱与深度学习的医疗问答系统。系统采用Neo4j存储医疗知识图谱,使用Aho-Corasick算法进行高效多模式匹配,并整合了BERT+LSTM+CRF深度学习模型。实现流程包括数据爬取、清洗、实体识别、知识图谱建模等步骤,最终构建了一个具有可视化界面的Flask应用。系统支持自然语言问答,能自动存储交互记录到SQL数据库。文章还详细说明了所需的软件环境配置(JDK1.8

人工神经网络(ANN, Artificial Neural Networks)是一种受生物神经网络启发的计算模型,用于模拟人类大脑处理信息的方式。它由大量相互连接的节点(称为神经元)组成,这些神经元通过权重连接形成网络。ANN的基础构成包括输入层、隐藏层和输出层。输入层接收原始数据,隐藏层负责提取和处理数据的特征,而输出层则提供最终结果。每个神经元通过激活函数(如Sigmoid、ReLU等)处理输

基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统通过构建医疗领域的知识图谱来实现计算机的深度学习,并且能够实现自动问答的功能。本次的内容研究主要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,基于Python语言通过echarts、Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学

针对模型的拟合,这里引入两个概念:过拟合,欠拟合。过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的现象。当模型过度拟合训练集时,它会学习到训练数据中的噪声和异常模式,导致对新数据的泛化能力下降。过拟合的典型特征是模型对训练集中每个样本都产生了很高的拟合度,

随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional Neural Network)算法垃圾分类识别系统,以实现自动化高效的垃圾分类。该系统将利用大数据集进行训练,通过深度学

卷积神经网络是一种前馈神经网络,它的人工神经元可以响应周围单元的局部区域,从而能够识别视觉空间的部分结构特征。卷积层: 通过卷积操作检测图像的局部特征。激活函数: 引入非线性,增加模型的表达能力。池化层: 减少特征维度,增加模型的鲁棒性。全连接层: 在处理空间特征后,全连接层用于进行分类或回归。卷积神经网络的这些组件协同工作,使得CNN能够从原始像素中自动学习有意义的特征层次结构。随着深度增加,这








