简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
2023 年,微软在 CVPR2023 发表论文「 多模态基础模型:从专家到通用助手 」(Multimodal Foundation Models: From Specialists to General-Purpose Assistants) 。本文全面综述了多模态基础模型的分类和演化,这些模型展示了视觉和视觉语言能力,并重点关注了从专家向通用助手的过渡。
本节介绍 QtDesigner 和 PyUIC 的快速入门,使用 QtDesigner 是开发 PyQt5 图形界面的基本方法。本节还介绍采用面向对象的程序设计方法,来编写图形界面的主程序。
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文。本文介绍微分方程模型的建模与求解,通过常微分方程、常微分方程组、高阶常微分方程 3个案例手把手教你搞定微分方程。通过 RLC 二阶电路问题,学习微分方程模型的建模、求解和讨论。更多微分方程数学模型案例,参见 【新冠疫情 模型系列】。1. 微分方程1.1 基本概念微分方程是描述系统的状态随时间
1、生成树和最小生成树1.1 生成树连通的无圈图称为树,就是不包含循环的回路的连通图。对于无向连通图,生成树(Spanning tree)是原图的极小连通子图,它包含原图中的所有 n 个顶点,并且有保持图连通的最少的边,即只有足以构成一棵树的 n-1 条边。生成树满足:(1)包含连通图中所有的顶点;(2)任意两顶点之间有且仅有一条通路。因此,生成树中边的数量 = 顶点数 - 1。对于非连通无向图,
主成分分析(Principal Components Analysis,PCA)是一种基于统计的数据降维方法,又称主元素分析、主分量分析。主成分分析只需要特征值分解,就可以对数据进行压缩、去噪,应用非常广泛。主成分分析的基本步骤是:对原始数据归一化处理后求协方差矩阵,再对协方差矩阵求特征向量和特征值;对特征向量按特征值大小排序后,依次选取特征向量,直到选择的特征向量的方差占比满足要求为止。....
直方图均衡化是一种简单有效的图像增强技术。根据直方图的形态可以判断图像的质量,通过调控直方图的形态可以改善图像的质量。直方图均衡化是将原始图像通过函数变换,调控图像的灰度分布,得到直方图分布合理的新图像,以此来调节图像亮度、增强动态范围偏小的图像的对比度。OpenCV 提供了函数 **cv2. equalizeHist**可以实现直方图均衡化。...
函数 cv2.cartToPolar 用于将直角坐标(笛卡尔坐标)转换为极坐标,函数 cv2.polarToCart 用于将极坐标转换为直角坐标(笛卡尔坐标)。圆形图案边缘上的文字经过及坐标变换后可以垂直的排列在新图像的边缘,便于对文字的识别和检测。...
图像模糊通过平滑(加权平均)来实现,类似于积分运算。图像锐化则通过微分运算(有限差分)实现,使用一阶微分或二阶微分都可以得到图像灰度的变化值。图像锐化的目的是增强图像的灰度跳变部分,使模糊的图像变得清晰。图像锐化也称为高通滤波,通过和增强高频,衰减和抑制低频。图像锐化常用于电子印刷、医学成像和工业检测。
图像锐化的目的是增强图像的灰度跳变部分,使模糊的图像变得清晰。图像锐化也称为高通滤波,通过和增强高频,衰减和抑制低频。图像锐化常用于电子印刷、医学成像和工业检测。Sobel 算子是一种离散的微分算子,是高斯平滑和微分求导的联合运算,抗噪声能力强。Sobel 梯度算子很容易通过卷积操作 cv.filter2D 实现,OpenCV 也提供了函数 cv.Sobel 实现 Sobel 梯度算子。
本项目基于 PyQt5 GUI 实现摄像头操作与拍摄实时视频。使用 OpenCV处理摄像头设备进行解码获得图像帧,然后用 QTime 定时器控制 QLabel 中的图像更新,使用按钮控制摄像画面的移动。