
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
AI在生物蛋白质合成中应用

利用AI方法来解决分子适配的问题AI解决官能团适配AI解决分子结构对功能生效问题

这篇文章介绍了一种方法,可以让大型语言模型(LLM)具备在多种代理任务上表现出色的能力,缩小了开源和商业LLM在这方面的差距。该方法称为AgentTuning,它包括以下两个步骤:● 首先,构建了一个覆盖多种代理任务的数据集,称为AgentInstruct,它包含了1,866个经过验证的代理交互轨迹,每个轨迹都有一个人类指令和一个代理动作。● 然后,设计了一种指令调优策略,将AgentInstru

大模型训练,是工程和算法的合力作用。对于工程分布式计算系统是绕不过去的核心中的核心。这篇文章和大家分享分布式时候内存消耗在哪、zero策略、流水线策略、动态策略

那么有没可能同时保持模型泛化力有模块化增量增加其他能力,不影响其它能力。我提出的想法是用某块组合方式来实现:1.pretrain保持泛化性2.把pretrain模型参数用更小可控参数矩阵层转换控制3.在可控参数矩阵层之上增加adapter层,这样相当于是pretrain是一个很复杂通用机器,通过控制矩阵引出基础控制算子,然后在通过adapter层作为控制算子编程层,用ssft数据任务调教控制编程层

visual chat将会是多模态大模型一个过渡态,Gpt4以及他的后代一定会用集成电路的模式取代这个分立元器件组成的通用多模态模式。但是它的很多思路是值得我们学习的。

visual chat将会是多模态大模型一个过渡态,Gpt4以及他的后代一定会用集成电路的模式取代这个分立元器件组成的通用多模态模式。但是它的很多思路是值得我们学习的。

分布式系统领域有着最令人费解的理论,全链路的不确定性堪比物理中的量子力学。同时,分布式系统领域又有着当代最宏伟的计算机系统,Google、Facebook、亚马逊遍布全球的系统支撑着我们的信息生活。显然,能够征服分布式系统的,都是理论和实践两手抓两手都要硬的强者。然而,分布式系统领域还有着最高的上手门槛,没有大规模的基础设施、没有潮水般的流量,分布式领域幽灵般的问题并不会浮出水面。那么,我们应该如
智能问答系统是现代信息技术系统不可或缺的一个部分,然因问答系统的复杂性,智能问答系统一直未能取得很好的作用。本文将尝试从问答系统的四个方向做概要性总结。问答系统目前实现的方式主要包括:1)知识图谱问答:基于语义的方法、基于答案排序的方法2)表格问答:表格检索、答案生成3)文本问答:答案句子选择、答案生成4)社区问答:问题匹配、问题改写、问题自动生成基于语义的知识图谱问答思路...
1.介绍了为何要开始内容运营2.介绍内容运营产品需要具备的几个能力3.介绍了如何基于LLM模型来构建内容运营系统4.介绍了如何提升LLM模型的能力








