
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文将基于多示例深度学习EPLA模型实现对乳腺癌数据集的分类。EPLA模型是处理组织病理学图像的经典之作。EPLA模型是基于多示例学习来进行了,那么多示例学习模型对处理病理学图像具有天然的优势,因为多示例学习(Multiple Instance Learning 简称 MIL)是由监督型学习算法演变出的一种方法,定义“包”为多个示例的集合,具有广泛的应用。学习者不是接收一组单独标记的实例,而是接收

在云计算蓬勃发展的时代背景下,众多计算密集型难题,如旅行商问题(TSP),依托云计算强大算力求解成为必然趋势。TSP 问题广泛存在于城市交通规划、物流运输、通信网络布局等关键领域,其求解对优化资源配置、降低成本意义深远。然而,TSP 属于 NP 难问题,大规模场景下求解需强大计算资源支撑,云计算平台应运而生成为求解利器,但随之而来的云计算服务定价问题成为制约产业发展的关键因素。现行云服务定价机制,

本文提出了 VoiceLDM,这是一种旨在生成准确遵循两种不同自然语言文本提示的音频的模型:描述提示和内容提示。前者提供有关音频整体环境背景的信息,而后者则传达语言内容。为了实现这一目标,我们采用基于潜在扩散模型的文本到音频(TTA)模型,并扩展其功能以纳入额外的内容提示作为条件输入。通过利用预训练对比语言音频预训练 (CLAP) 和 Whisper,VoiceLDM 可以在大量真实世界音频上进行

文心智能体平台(Wenxin Intelligent Agent Platform)是由百度开发的一个全面集成多种人工智能技术的开放平台,旨在为企业和开发者提供强大的智能化服务和解决方案。在现代企业的数字化转型过程中,智能化运维成为提升企业竞争力的关键因素之一。为此,我们推出了基于文心智能体平台的智能运维助手——运维小帮手,旨在通过先进的人工智能和自动化技术,为IT运维团队提供高效的解决方案。文心

放一张GAN的结构,如下:我们有两个网络,生成网络G和判别网络D。生成网络接收一个(符合简单分布如高斯分布或者均匀分布的)随机噪声输入,通过这个噪声输出图片,记做G(z)。判别网络的输入是x,x代表一张图片,输出D(x)代表x为真实图片的概率。最终的目的式能够生成一个以假乱真的图片,使D无法判别真假,D存在的意义是不断去督促G生成的质量

KAN模型是一种对标多层感知机(MLP)的新型网络结构。与传统的MLP在节点(神经元)上放置固定的激活函数不同,KAN模型在权重上应用了可学习的激活函数。这些一维激活函数被参数化为样条曲线,使得网络能够以一种更灵活、更接近Kolmogorov-Arnold表示定理的方式来处理和学习输入数据的复杂关系。KAN作为一种新提出的能够替换MLP的一种神经网络基石,无论是做项目,还是发论文都是非常有吸引力的

神秘男子影,秘而不宣藏。泣意深不见,男子自持重,子夜独自沉。论文链接点击开启你的论文编程之旅检测作为计算机视觉领域的一项重要任务,旨在从图像中准确地识别并定位出感兴趣的目标。近年来,随着深度学习技术的快速发展,目标检测算法取得了显著的进展。本文将带您回顾目标检测技术的发展历程,从早期的二阶段算法,到YOLO系列,再到如今的Grounding Dino。

今天来给大家讲解一篇发表在中科院一区顶级期刊上《IEEE Transactions on Cybernetics》的有关于目前人工智能计算机视觉新方向(宽度学习)的文章。作者在这篇文章中基于宽度神经网络提出了一种改进的新模型,融入了模糊规则来提高模型对特殊特征的分辨能力。由于模糊规则的复杂性,本博客用了比较多的博客来讲述,如果大家觉得太难,可以直接下载附件代码先跑起来,从代码入手再回来看数学公式会

Aspiringcode - 编程抱负 即刻实现传知代码只专注开箱即用的代码。

本文介绍了一种名为LART的新方法,用于提高视频帧中人体动作识别的准确性。LART方法的核心在于结合了3D姿态跟踪和外观特征,以捕捉人体动作的动态变化和上下文信息。LART方法首先利用PHALP算法进行人物跟踪,将2D检测提升至3D表示,从而获得人物在视频中的轨迹。通过结合SMPL模型参数化的3D姿态和外观特征(如MViT模型提取的特征),LART构建了一个包含时空信息的人向量。使用Transfo
