
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文提出一种“模型预测控制(MPC)+ 滚动时域估计(MHE)”一体化框架,旨在解决在传感器和执行器双重噪声环境下,将移动机器人稳定到指定目标点 xs 的问题。与现有研究仅单独考虑状态或控制噪声、且将估计与控制分步求解的做法不同,本文创新性地把传感器噪声和执行器噪声同时纳入联合优化,实现了真正意义上的“估计–控制闭环”。采用多重打靶法将 MPC 问题转化为非线性规划(NLP),并利用 CASAD
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
本文聚焦无模型自适应预测控制(MFAPC)与无模型自适应迭代学习控制(MFAILC)的数值验证仿真研究。通过构建基于紧致形式动态线性化(CFDL)的仿真程序,分别验证了MFAPC在非线性系统预测跟踪中的有效性,以及MFAILC在非线性系统迭代轨迹跟踪中的性能。仿真结果表明,两种方法均能有效处理非线性系统控制问题,为复杂工业过程的控制提供了新的思路。
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基
二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相
飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的
总结GA更适合静态环境下的全局路径探索,PSO在动态环境中表现更优,而混合算法通过优势互补,在复杂任务中综合性能最佳。混合算法的核心挑战在于平衡计算效率与优化精度,需根据任务需求选择分层、嵌入式或并行策略。未来方向多算法融合:结合蚁群算法、深度学习等进一步提升适应性。硬件加速:利用FPGA或GPU实现混合算法的并行计算。动态参数调整:设计自适应惯性权重和变异概率。通过上述分析可见,混合遗传-粒子群
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。







