
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
核心定义运行备用是为应对电力系统供需不平衡而预留的额外容量,包括发电侧与负荷侧资源(如电动汽车)。其核心功能是平衡负荷波动、新能源出力随机性及设备故障等不确定性事件。国际能源署(IRENA)强调,随着可再生能源渗透率提升,运行备用需满足更快的响应速度(如秒级至分钟级)。分类与响应时间旋转备用:已并网的机组可快速(10分钟内)调整出力,如火力发电机组余力或水力机组待机容量。非旋转备用:需短时启动的资
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
实验采用公开的多模态MRI影像数据集,如BRATS数据集,该数据集包含了多种模态的MRI影像(T1、T1c、T2、FLAIR)以及对应的脑肿瘤标注信息。将数据集划分为训练集、验证集和测试集,以保证实验结果的客观性和可靠性。
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
我们提出了一种分布式算法,用于在有界凸环境中利用多个追捕者对多个逃逸者进行协作追捕。该算法适用于拦截受保护空域中的失控无人机等应用。追捕者不知道逃逸者的策略,但通过采用基于环境的Voronoi镶嵌的全局“区域最小化”策略,我们保证了所有逃逸者都能在有限时间内被捕获。我们还提出了这种策略的去中心化版本,适用于二维(2-D)和三维(3-D)环境,并通过多次仿真表明,它优于其他去中心化的多追捕者启发式方
基于强化学习(RL)的博弈论方法和模拟通常用于分析电力市场均衡。然而,前者仅限于信息完全的简单市场环境,难以直观地反映隐性合谋;而传统的RL算法仅限于低维离散状态和动作空间,并且收敛不稳定。为了解决上述问题,本文采用深度确定性策略梯度(DDPG)算法来模拟发电公司(GenCos)的竞价策略。包括GenCo、负载和网络的不同设置的仿真实验表明,所提出的方法比传统的RL算法更准确,即使在信息不完整的环
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
本文研究了Q-learning算法结合ε-greedy策略在随机生成方形迷宫路径规划中的应用。通过构建离散状态空间、设计多层次奖励函数,并采用动态参数调整机制,实现了智能体在未知环境中的高效寻路。实验结果表明,该算法在10×10迷宫中经过1500次迭代后,路径成功率达到98%,平均步长较传统A*算法缩短23%。研究验证了强化学习在动态路径规划中的适应性优势。
多无人机协同追捕-逃逸问题属于多智能体动态博弈领域,具有军事防御、边境巡逻、灾难救援等应用场景。传统集中式控制依赖全局信息,存在通信延迟、单点故障等问题。分散式策略通过局部感知与自主决策,可提升系统鲁棒性与适应性。
受无人机在商业领域应用的影响,多无人机(MultiUAV)路径规划已引发广泛关注。然而,当前的研究往往未能全面考量这一复杂问题中固有的现实约束条件。本报告研究了在城市环境中执行导航任务的智能体的高效路径规划问题。每个智能体均承担配送任务,需先移动至起始点,再前往后续目标位置,同时要绕过障碍物并避免与其他智能体发生碰撞。







