
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文介绍了一个基于深度学习知识图谱的医疗问答可视化系统。系统采用Neo4j存储医疗知识图谱,结合Flask框架实现问答功能,并封装了BERT+LSTM+CRF深度学习模型。关键技术包括:基于贪心算法的分词策略、Aho-Corasick多模式匹配算法、命名实体识别等。系统实现了医疗知识问答、聊天机器人交互、数据自动存储等功能。开发环境包括Neo4j 4.4.5、JDK 1.8、Python等工具。项

采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

Django(发音为"jan-go")是一个高级的Python web框架,它鼓励快速开发和干净、可重用的设计。Django 遵循经典的 Model-View-Controller(MVC)软件设计模式,但采用了稍微不同的结构。在Django中,这个模式被称为Model-View-Template(MVT)。负责数据存储和检索。定义数据模型,通过对象关系映射(ORM)将数据模型映射到数据库表。处理

Python语言、Flask框架、MySQL数据库、requests网络爬虫技术、scikit-learn机器学习、snownlp情感分析、词云、舆情分析3、项目说明1.开发工具本项目主要采用 PyCharm 开放平台利用 Python 语言来实现的。PyCharm 是一种PythonIDE,带有一整套可以帮助用户在使用 Python 语言开发时提高其效率的工具。2.数据获取。

本项目基于医疗方面知识的问答,通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。本项目以neo4j作为存储,基于传统规则的方式完成了知识问答,并最终以关键词执行cypher查询,并返回相应结果查询语句作为问答。后面我又设计了一个简单的基于 Flask 的聊天机器人应用,医疗AI助手会根据用户的问题返回结果,用户输入和系统返回的输出结果都会一起自动存储到sql数据库,项目整体的代码

基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统通过构建医疗领域的知识图谱来实现计算机的深度学习,并且能够实现自动问答的功能。本次的内容研究主要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,基于Python语言通过echarts、Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学

在互联网时代,各行各业的人们都在寻求增长点,人们的日常生活越来越离不开互联网。以旅游信息为例,线下大量的各种旅游信息基本只会出现在旅游会上,但是现如今,人们越来越重视时间成本,所以越来越多的年轻人在网上查找自己想要查找的旅游就业信息。然而,在互联网信息和海量数据源混合的情况下,如何快速精确的找到自己想要的数据是一个值得探讨的问题。本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本

在互联网时代,各行各业的人们都在寻求增长点,人们的日常生活越来越离不开互联网。以旅游信息为例,线下大量的各种旅游信息基本只会出现在旅游会上,但是现如今,人们越来越重视时间成本,所以越来越多的年轻人在网上查找自己想要查找的旅游就业信息。然而,在互联网信息和海量数据源混合的情况下,如何快速精确的找到自己想要的数据是一个值得探讨的问题。本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本

采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

该系统的核心目标在于为用户提供一套全面的房屋信息分析和个性化推荐服务,利用大数据技术和机器学习算法,为用户提供更精准、实用的房屋选择建议。通过整合前后端技术、数据分析、机器学习以及地图API,该系统为用户提供了一个交互性强、信息全面的房屋推荐平台,为房屋搜索和选择提供了更多的维度和可视化的支持。








