
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
随着电子商务行业的蓬勃发展,物流管理成为了整个供应链中至关重要的一环。本毕设旨在利用Django框架,设计并实现一个快递物流管理可视化系统,旨在提升物流运营效率和服务质量。该系统将涵盖快递信息录入、订单追踪、运输路线规划、配送员管理等功能模块,通过直观的可视化界面展示物流数据,帮助管理人员实时监控货物流转情况,优化配送路径,提高配送效率。系统还将包括用户端界面,方便用户查询订单状态、评价配送服务,

该系统的核心目标在于为用户提供一套全面的房屋信息分析和个性化推荐服务,利用大数据技术和机器学习算法,为用户提供更精准、实用的房屋选择建议。通过整合前后端技术、数据分析、机器学习以及地图API,该系统为用户提供了一个交互性强、信息全面的房屋推荐平台,为房屋搜索和选择提供了更多的维度和可视化的支持。

基于python机器学习XGBoost算法农业数据可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作

节点类型的定义:checks, departments, diseases, drugs, foods, producers, symptoms: 这些都是不同类型的节点,代表了医学领域中的检查、科室、疾病、药品、食物、药品大类和症状等实体。实体属性的定义:name: 疾病的名称。desc: 描述疾病的属性。prevent: 预防措施。cause: 引起疾病的原因。easy_get: 疾病容易发生

Django(发音为"jan-go")是一个高级的Python web框架,它鼓励快速开发和干净、可重用的设计。Django 遵循经典的 Model-View-Controller(MVC)软件设计模式,但采用了稍微不同的结构。在Django中,这个模式被称为Model-View-Template(MVT)。负责数据存储和检索。定义数据模型,通过对象关系映射(ORM)将数据模型映射到数据库表。处理

采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作物产量的预测功能。该模块可以对当前或未来某一时间段的农作物产量进行预测,并提供预测结果的可视化展示。

在信息科技蓬勃发展的当代,我们推出了一款基于Python机器学习算法全国气象数据采集可视化分析预测系统。随着气候变化越发引起全球关注,精准的气象数据和可视化展示变得愈发重要。该系统采用先进的技术和创新的功能,满足用户对实时气象信息和历史天气数据的需求,助力公众、企业和政府做出更明智的决策。在技术层面,我们充分利用Python网络爬虫技术,从中国天气网等权威数据源获取全国实时天气数据历史天气数据,确

本项目基于医疗方面知识的问答,通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。本项目以neo4j作为存储,基于传统规则的方式完成了知识问答,并最终以关键词执行cypher查询,并返回相应结果查询语句作为问答。后面我又设计了一个简单的基于 Flask 的聊天机器人应用,医疗AI助手会根据用户的问题返回结果,用户输入和系统返回的输出结果都会一起自动存储到sql数据库,项目整体的代码

本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括数据采集、数据清洗、数据分析与可视化展示。首先,我们使用爬虫技术从豆瓣电影网站获取丰富的电影数据,包括电影基本信息、评分、评论等存储到Mysql数据库
