
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
人工势场法作为一种常用的路径规划方法,具有计算简单、实时性好等优点,在移动机器人路径规划中得到了广泛的应用。- **混合策略**: 将人工势场法与其他路径规划算法(如A*算法、Dijkstra算法等)结合,增强解决局部极小值问题的能力。- **在线学习**: 通过机器学习的方法自适应调整势场参数,提高在复杂环境中的适应能力。1. **计算效率高**: 由于只需要计算力的大小和方向,算法简单快速,适

文献来源:摘要本研究从控制角度探讨了重力补偿的主题。重力可以通过补偿机械系统或控制法则(如比例-微分(PD)加重力、滑模控制或计算力矩法)来平衡。在连续和离散时间域中,重力补偿项在线性和非线性最优控制中均缺失。控制系统的平衡点通常为零,这导致在所需条件未设置在原点或在其他情况下(其中控制系统的平衡点处重力向量不为零)无法进行调节。在这些情况下,系统需要稳态输入信号来补偿重力。本文介绍了基于非线性最

优势:DDPG通过端到端学习连续控制策略,避免了传统方法对精确模型的依赖,在非线性、高维状态空间中表现优异。其在倾转旋翼无人机中的应用已覆盖姿态控制、路径规划与多模态过渡等场景。挑战训练效率:复杂动力学下的样本需求量大,可结合优先级经验回放(PER)加速收敛。鲁棒性提升:引入TD3(双延迟DDPG)抑制Q值高估,或结合模型预测控制(MPC)增强抗干扰能力。硬件部署:需优化算法实时性,适配嵌入式飞控

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

DQN是一种结合了深度学习和Q-learning的强化学习算法。它通过神经网络来近似Q函数(状态-动作值函数),从而能够在高维状态空间中有效地进行决策。DQN算法的核心思想是利用神经网络来估计每个动作的价值,并根据价值选择最优动作。状态:无人机的当前位置、速度、姿态以及周围环境的感知信息(如障碍物位置、禁飞区等)共同构成无人机的当前状态。动作:无人机可以采取的动作包括改变飞行方向、调整飞行高度、加

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
全覆盖路径规划是机器人、无人机及自动化设备在环境监测、农业喷洒、建筑3D打印等领域的关键技术。传统螺旋规划虽能实现区域遍历,但存在路径冗余、复杂环境适应性差等问题。本文提出一种融合A*算法的螺旋式全覆盖路径规划方法,通过构建分层栅格地图、设计动态启发函数及优化螺旋扩展策略,实现复杂环境下的高效、无遗漏覆盖。实验表明,该方法在路径长度、覆盖率及死点数量等指标上显著优于传统螺旋算法,为动态环境下的全覆
本文提出一种结合A星算法、遗传算法(GA)与动态窗口法(DWA)的混合路径规划框架,旨在解决移动机器人在动态复杂环境中的全局路径优化与实时避障问题。通过A星算法生成初始全局路径,遗传算法对路径进行全局优化以提升平滑性与安全性,DWA算法在局部范围内实现动态避障与速度调整。实验结果表明,该混合算法在路径长度、避障成功率及实时性方面显著优于单一算法,尤其在动态障碍物场景中表现出强鲁棒性。
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是传统作业车间调度问题的拓展,具有更高的复杂性和灵活性。NSGA-II作为一种有效的多目标优化算法,在解决FJSP方面展现出强大的能力。本文详细探讨了NSGA-II在FJSP中的应用,包括算法原理、染色体编码、交叉变异操作、实验设计与结果分析等,旨在为实际生产调度提供有效的解决方案。







