简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
6月18日,中国气象局发布人工智能全球中短期预报系统“风清”(以下简称“风清”大模型)、人工智能临近预报系统“风雷”(以下简称“风雷”大模型)和人工智能全球次季节-季节预测系统“风顺”(以下简称“风顺”大模型)。综合国内气象大模型发展并对标国际前沿进展,中国气象局联合清华大学组建攻关团队,在大模型预报核心技术、预报精准程度上寻求突破,构建了“风清”大模型。该模型具有大气强物理融入和可解释性,在实现
4.19日凌晨正准备睡觉时,突然审稿项目组的文弱同学说:Meta发布Llama 3系列大语言模型了一查,还真是本文以大模型开发者的视角,基于Meta官方博客的介绍:Introducing Meta Llama 3: The most capable openly available LLM to date,帮你迅速梳理下LLama的关键特征,并对比上一个版本的LLama2,且本文后续,将更新用我司
LangChain 是一个用于开发由语言模型驱动的应用程序的框架。主要作用为允许与 LLM 模型进行交互,使用 LLM 模型与外部数据源进行连接。LangChain功能LLM 调用支持多种模型接口,比如 OpenAI、Hugging Face、AzureOpenAI …Fake LLM,用于测试缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL用量记录支持流模式Prompt管
随着人工智能技术的不断进步,企业挖掘AI应用场景的能力变得至关重要。企业在这一过程中应关注的关键点:从理解AI技术的潜力与局限,到跨学科融合与系统思维的培养;从市场与客户需求的精准分析,到技术可行性与商业价值的全面评估;再到开放性与封闭性场景的策略制定,以及创新思维与非线性发展的引导。既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来
Agent(智能体)概念最早由人工智能领域的研究者提出,旨在模拟人类的智能行为。最初的Agent系统主要集中在解决特定问题或领域,如专家系统、规则引擎等。20世纪80年代末和90年代初,随着计算机和网络技术的发展,Agent开始融入到各种应用中,如搜索引擎、个人助理等。强化学习等技术的兴起(2014年起,深度强化学习出现)使得Agent能够通过与环境的交互来学习和优化其行为。
大多数情况下,会使用NumPy或Pandas坚持到了这儿,恭喜你,表示你有做开发的潜力,其实我想说的上面的内容还是刚刚开始,刚开始大家不需要多么精通了解这些内容,除了Python方面的知识,每个部分掌握一点儿能进行基本开发就好,主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。
大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文讨论的大模型将以平时指向比较多的大语言模型为例来进行相关介绍。
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。利用如 Wolfram Alpha、Smart Sparrow或Docebo等AI自适应学习平台,我们可以构建定制化的学习路径,这些平台依据用户的学习模式和需求进行分析,创造出独特且个性化的学习计划。作为普通人,入局大模型时代
②虚假信息:大语言模型可能会生产一些具有极强迷惑性的信息,甚至可能被用于传播虚假信息或进行舆论操纵:当前社交机器人更多停留在一级传播,如果大语言模型和社交机器人相结合,就可能会形成类人的交流能力,带来社交机器人的多级传播,从而强化社交机器人传播虚假信息的负面影响。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解
在大模型领域,输入通常被称为“提示词”(prompt),它们是引导LLM(大语言模型)生成相应输出的关键。对于那些能处理多样化任务的LLM来说,一个合理设计的prompt会极大地影响模型的表现。提示工程(prompt engineering)正是关于如何为特定任务构建能够充分发挥大模型能力的prompt技巧。本文将深入探讨提示工程,内容涵盖基本原理、一些重要概念以及常用的辅助工具。和。模型无法读懂