
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
ResNet50迁移学习。

打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。心得:通过这一节快速入门的学习让我对mindspore的工具和基本知识有了一个具体的形象,初步开始熟悉相关工具的使用。在本教程中,我们使用Mnist数据集,自动下载完成后,使用提供的数据变换进行预处理。:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(grad

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:K值,

ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleN

输入是3x64x64的图像,输出是该图像为真图像的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))的值。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。如DCGAN论文所述,我们希望通过最小化𝑙𝑜𝑔(

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。

在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。常用稀疏张量的表达形式是。张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。: 一维整数张量,表示稀疏张量非零元素在列中的位置, 与长度相等,索引数据类型支持int16

与传统方法不同,MusicGen采用单个stage的Transformer LM结合高效的token交织模式,取消了多层级的多个模型结构,例如分层或上采样,这使得MusicGen能够生成单声道和立体声的高质量音乐样本,同时提供更好的生成输出控制。MusicGen不仅能够生成符合文本描述的音乐,还能够通过旋律条件控制生成的音调结构。MusicGen是来自Meta AI的Jade Copet等人提出的
如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。Diffusion对于图像的处理包括以下两个过程:我们选择的固定(或预定义)正向扩散过程 𝑞𝑞 :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声









