logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

【无人机】基于Koopman算子合成的CBF进行碰撞避免研究(Matlab代码实现)

基于Koopman算子合成的CBF进行碰撞避免研究是指利用学习的Koopman算子和控制边界函数(CBF)来实现无人机的碰撞避免。这种方法结合了动力学系统的模型和安全性约束,通过学习系统的动态特性和边界函数来设计出一个控制策略,使得无人机在避免碰撞的同时,能够实现其特定任务目标,比如着陆等。这项研究旨在提高无人机的飞行安全性和任务执行效率,为实际应用场景中无人机的自主飞行提供更多可靠的解决方案。碰

#无人机#matlab#cocos2d +1
【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)

由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关

#网络#分布式#matlab +1
【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)

由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关

#网络#分布式#matlab +1
【无人机】基于遗传算法混合粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)

总结GA更适合静态环境下的全局路径探索,PSO在动态环境中表现更优,而混合算法通过优势互补,在复杂任务中综合性能最佳。混合算法的核心挑战在于平衡计算效率与优化精度,需根据任务需求选择分层、嵌入式或并行策略。未来方向多算法融合:结合蚁群算法、深度学习等进一步提升适应性。硬件加速:利用FPGA或GPU实现混合算法的并行计算。动态参数调整:设计自适应惯性权重和变异概率。通过上述分析可见,混合遗传-粒子群

#无人机#算法#matlab +1
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)

随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模

#分布式#matlab#开发语言 +1
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)

随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模

#分布式#matlab#开发语言 +1
基于A*、遗传、蚁群优化和元胞自动机四种经典算法实现四种场景下六边形网格路径规划研究(Python代码实现)

路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综

#算法#人工智能#javascript +1
【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python

TCN是一种专门用于处理时间序列数据的卷积神经网络。它通过一维卷积和因果卷积(causal convolution)来确保模型输出的每个时间步只依赖于过去的信息,从而避免了未来信息的泄露。TCN还具有残差连接(residual connections)和扩张卷积(dilated convolutions)等特性,能够捕获长期依赖关系并减少训练过程中的梯度消失问题。KAN是一种注意力机制,旨在从输入

#python#pytorch#lstm +1
【风电功率预测】【多变量输入单步预测】基于LSTM的风电功率预测研究(Matlab代码实现)

在能源和人工智能领域具有重要意义。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),通过引入门结构解决了传统RNN中的“长期依赖”问题,从而能够有效捕捉时间序列数据中的长期依赖关系和时序特征,这对于风电功率预测尤为关键。

#lstm#matlab#人工智能 +1
    共 58 条
  • 1
  • 2
  • 3
  • 6
  • 请选择