logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

现代循环神经网络:门控循环单元(GRU)

门控循环神经网络(Gated Recurrent Neural Network,简称“门控循环神经网络”或“门循环神经网络”)是一种改进的循环神经网络(RNN)架构。它包含了一些门控机制,可以更好地捕捉时间序列数据中的长期依赖关系。门控循环神经网络最早由Hochreiter和Schmidhuber在1997年提出,但是由于当时缺乏计算能力和数据集,它并没有得到广泛应用。后来,在2014年,Cho等

文章图片
#rnn#gru#深度学习 +2
现代循环神经网络:双向循环神经网络

双向循环神经网络(Bidirectional Recurrent Neural Network,简称BRNN)是一种能够处理序列数据的神经网络,它能够在一个序列数据中同时考虑过去和未来的信息。与传统的循环神经网络(RNN)不同的是,BRNN在每个时间步上使用两个独立的循环结构,一个用于从过去到未来的传递信息,另一个用于从未来到过去的传递信息。

文章图片
#rnn#深度学习#人工智能 +1
网内计算:可编程数据平面和技术特定应用综述

多年来,计算历史经历了从传统并行计算、网格计算到云计算的不同范例的演进。云计算[1]提供了包括基础设施即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS)在内的各种服务模型,带来了可扩展性、按需资源 provisioning、按量计费的价格模型以及方便的应用和服务 provisioning 等优势和功能。IaaS(Infrastructure as a Service,基础架构即服务

文章图片
#网络#边缘计算#云计算 +1
大语言模型(LLM)综述(三):大语言模型预训练的进展

随着人工智能和机器学习领域的迅速发展,语言模型已经从简单的词袋模型(Bag-of-Words)和N-gram模型演变为更为复杂和强大的神经网络模型。在这一进程中,大型语言模型(LLM)尤为引人注目,它们不仅在自然语言处理(NLP)任务中表现出色,而且在各种跨领域应用中也展示了惊人的潜力。从生成文本和对话系统到更为复杂的任务,如文本摘要、机器翻译和情感分析,LLM正在逐渐改变我们与数字世界的互动方式

文章图片
#语言模型#人工智能#自然语言处理
自然语言处理(七):来自Transformers的双向编码器表示(BERT)

BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的自然语言处理模型,由Google于2018年提出。它是基于Transformer模型架构的深度双向(双向指同时考虑上下文信息)表示学习模型。BERT的目标是通过在大规模文本语料上进行自监督学习来学习通用的语言表示。

文章图片
#自然语言处理#bert#人工智能
大语言模型(LLM)综述(六):大型语言模型的基准和评估

为了检验LLM的有效性和优越性,已经提出了大量任务和基准,用于进行经验能力评估和分析。在本节中,我们首先介绍了LLM在语言生成和理解方面的三种基本能力评估类型,然后介绍了几种具有更复杂设置或目标的LLM的高级能力评估,最后讨论了现有的基准、评估方法和经验分析。

文章图片
#语言模型#人工智能#自然语言处理
自然语言处理应用(三):微调BERT

微调(Fine-tuning)BERT是指在预训练的BERT模型基础上,使用特定领域或任务相关的数据对其进行进一步训练以适应具体任务的需求。BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的深度双向预训练语言模型,通过在大规模无监督数据上进行预训练,学习到了丰富的语言表示。:根据任务或领域

文章图片
#自然语言处理#bert#easyui
深度学习神经网络基础知识(三)前向传播,反向传播和计算图

本文讲述神经网络基础知识,具体细节讲述前向传播,反向传播和计算图,同时讲解神经网络优化方法:权重衰减,Dropout等方法,最后进行Kaggle实战,具体用一个预测房价的例子使用上述方法。

#深度学习#神经网络#机器学习
深度学习神经网络基础知识(一) 模型选择、欠拟合和过拟合

本文讲述神经网络基础知识,具体细节讲述前向传播,反向传播和计算图,同时讲解神经网络优化方法:权重衰减,Dropout等方法,最后进行Kaggle实战,具体用一个预测房价的例子使用上述方法。

文章图片
#深度学习#神经网络#机器学习
现代循环神经网络:门控循环单元(GRU)

门控循环神经网络(Gated Recurrent Neural Network,简称“门控循环神经网络”或“门循环神经网络”)是一种改进的循环神经网络(RNN)架构。它包含了一些门控机制,可以更好地捕捉时间序列数据中的长期依赖关系。门控循环神经网络最早由Hochreiter和Schmidhuber在1997年提出,但是由于当时缺乏计算能力和数据集,它并没有得到广泛应用。后来,在2014年,Cho等

文章图片
#rnn#gru#深度学习 +2
    共 13 条
  • 1
  • 2
  • 请选择