
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
我在 Claude 3 Opus、GPT-4-2024-04-09 和 Gemini 上拉了数据,Llama-3-400B仍在训练中,希望在接下来的几个月里会变得更好。与前一代Llama2相比,Llama3的训练集规模扩大了7倍、代码数据量增加了4倍,在预训练数据投入了更多资源,基于超过15T 的 Token,覆盖了超30种语言。“通过 Llama 3,我们着手构建与当今最好的专有模型相媲美的最佳

与“计算机视觉”中使用图像数据增强的标准做法不同,在NLP中,文本数据的增强非常少见。这是因为对图像的琐碎操作(例如将图像旋转几度或将其转换为灰度)不会改变其语义。语义上不变的转换的存在是使增强成为Computer Vision研究中必不可少的工具的原因。是否有尝试为NLP开发增强技术的方法,并探讨了现有文献。在这篇文章中,将基于我的发现概述当前用于文本数据扩充的方法。本文内容翻译整理自网络。NL
本文梳理了InternLM/InternVL系列的模型结构,详细讲解了InternLM2/InternVL1.5的算法原理,包括权重交织、Pixel Shuffle和Dynamic High Resolution等关键技术的细节理解。

什么是预训练模型?预练模型是其他人为解决类似问题而创建的且已经训练好的模型。代替从头开始建立模型来解决类似的问题,我们可以使用在其他问题上训练过的模型作为起点。预训练的模型在相似的应用程序中可能不是100%准确的。本文整理了自然语言处理领域各平台中常用的NLP模型,常见平台包括Tensorflow、Keras、Pytorch、MXNet、Caffe。分享给需要的朋友。点击文末阅读原文,获取预训练模
上下文窗口(context window)是指语言模型在进行预测或生成文本时,所考虑的前一个词元(token)或文本片段的大小范围。在语言模型中,上下文窗口对于理解和生成与特定上下文相关的文本至关重要。较大的上下文窗口可以提供更丰富的语义信息、消除歧义、处理上下文依赖性,并帮助模型生成连贯、准确的文本,还能更好地捕捉语言的上下文相关性,使得模型能够根据前文来做出更准确的预测或生成。最新发布的语言大

伦理问题的讨论由来已久,阿西莫夫的科幻小说中曾提出了著名的机器人三定律用以限制人工智能行为,但随着技术社会化的深入,我们的伦理忧虑显然已不再处于科幻小说或电影的虚构场景。总之,人工智能伦理计算将作为推动伦理治理发展的重要工具,通过促进伦理治理理论与实践的迭代发展,伦理计算将更安全地释放人工智能的潜力,并有望在协助制定法规等方面发挥作用,确保人工智能以符合伦理和道德原则的方式发展,最终造福人类社会。

本书介绍随着机器学习算法越来越多地被用来寻找模式,进行分析和做出决策(有时可能会影响人们做出最后的决策),至关重要的高回报率使得机器学习算法被应用于更多场景。本书中的机器学习Python项目试图实现这样一个目标:为当今和未来的开发人员配备可以用来更好地理解,评估和塑造机器学习的工具,以帮助确保它为我们所有人服务。hqdz:https://mp.weixin.qq.com/s?__biz=MzIxN

在 Sonnet 中,研究者发现了一个与阿谀奉承的赞美相关的特征,该特征会在包含诸如「你的智慧是毋庸置疑的」输入时激活。这使人们很难相信这些模型是安全的:如果我们不知道它们是如何工作的,我们怎么知道它们不会给出有害的、有偏见的、不真实的或其他危险的响应?2023 年 10 月,Anthropic 成功地将字典学习方法应用于一个非常小的 toy 语言模型,并发现了与大写文本、DNA 序列、引文中的姓

数据集的格式要求在不同的阶段是不同的,本教程以sft阶段的数据集需求,将以系统自带的identity数据集和将自定义的一个商品文案生成数据集为例,介绍数据集的使用。更多详情可以在https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md 中找到相关解释。系统目前支持 alpaca 和sharegpt两种数据格式,以alp
课程描述提出了解决生命科学中计算问题的创新方法,重点是基于深度学习的方法与传统方法的比较。主题包括蛋白质-DNA相互作用,染色质可及性,法规变异解释,医学影像理解,病历理解,治疗设计和实验设计(干预措施的选择和解释)。专注于机器学习模型的选择,鲁棒性和解释。团队使用TensorFlow或其他框架完成了一个多学科的最终研究项目。提供对每个生命科学问题的全面介绍,但要依靠学生理解概率问题的表述。修读研