logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

DeepSeek 3FS 与 JuiceFS:架构与特性比较

大规模 AI 训练中最主要的需求是高读带宽,为此 3FS 采用了性能优先的设计策略,将数据存储在高速磁盘上,并且用户需要自行管理底层数据存储。这种方法提升了性能,但成本较高,维护也更繁重。此外,为了充分发挥底层硬件的性能,其架构实现了客户端到网卡的零拷贝,利用共享内存和信号量减少 I/O 延迟和内存带宽占用。此外,通过带 TLS 的 I/O buffer pool 和合并网络请求,3FS 增强了小

文章图片
#架构
探索 LanceDB 在多种存储方案下的查询效率

LanceDB 是一个专为多模态数据设计的高性能向量数据库,旨在高效管理和搜索大规模的向量数据,特别适合用于 AI/ML 等应用场景,尤其是在多模态数据(如图像与文本嵌入)场景。JuiceFS 是一个为云原生环境设计的分布式 POSIX 文件系统。它采用元数据与数据分离架构,从而实现了对跨多个存储后端的大型数据集的高效管理。JuiceFS 提供了极高的可扩展性,适用于需要多个节点并行访问数据的场景

#人工智能#运维
AI 场景存储优化:云知声超算平台基于 JuiceFS 的存储实践

云知声是一家专注于语音及语言处理的技术公司。**Atlas 超级计算平台是云知声的计算底层基础架构,为云知声在 AI 各个领域(如语音、自然语言处理、视觉等)的模型迭代提供训练加速等基础计算能力。**Atlas 平台深度学习算力超过 57 PFLOPS(5.7 亿亿次/秒,是的你没有看错,是亿亿次]),深度学习算力是衡量一个 AI 平台计算性能的核心指标。除了满足公司内部的业务需求,平台也为外部企

#人工智能#机器学习#hdfs +1
之江实验室: 如何基于 JuiceFS 为超异构算力集群构建存储层 ?

今天,高性能计算结合人工智能技术正在推动科研创新。例如通过破解水稻基因密码推动作物育种从“试验选优”向“计算选优”发展,在医药领域快速分析分子与蛋白之间的相互作用,发现潜在的能够有效干预疾病发生的药物分子。之江实验室就是上述科研创新的推动者,实验室由浙江省政府主导、浙江大学等院校支持、企业参与的事业单位性质的新型研发机构,为材料、基因、制药、天文、育种等科学领域的研究提供新的方法、工具和手段。

文章图片
#数据库#系统架构#运维
上汽云 x JuiceFS : iGear 用了这个小魔法,模型训练速度提升 300%

一个高精度AI模型离不开大量的优质数据集,这些数据集往往由标注结果文件和海量的图片组成。在数据量比较大的情况下,模型训练周期也会相应加长。那么有什么加快训练速度的好方法呢?壕气的老板第一时间想到的通常是提升算力,增加资源。如果足够有钱的话,基本不需要再继续看其他解决方案了。但大多数情况下,面对昂贵的算力资源,我们不可能无限增加的。那在花了大价钱买到了有限资源的情况下,我们还可以通过什么方式加快模型

#big data#人工智能#云原生
JuiceFS + MinIO:Ariste AI 量化投资高性能存储实践

Ariste AI 是一家专注于 AI 驱动交易的公司,业务涵盖自营交易、资产管理、高频做市等多个领域。在量化交易研究中,数据的读取速度和存储效率,往往直接决定了研究迭代的速度。Ariste AI 团队在构建量化研究基础设施的过程中,面对总规模超过 500TB,行情与因子数据,经历了从本地盘到最终选择在 MinIO 对象存储之上叠加 JuiceFS 文件系统的四个阶段。通过缓存机制与分层架构,团队

#人工智能#机器学习
构建易于运维的 AI 训练平台:存储选型与最佳实践

伴随着公司业务的发展,数据量持续增长,存储平台面临新的挑战:大图片的高吞吐、超分辨率场景下数千万小文件的 IOPS 问题、运维复杂等问题。除了这些技术难题,我们基础团队的人员也比较紧张,负责存储层运维的仅有 1 名同事,因而组件的易用性,一直也是我们评估的重要维度。我们尝试过文件系统包括有 NFS、GlusterFS、Lustre 和 CephFS,最终选择了JuiceFS。

#运维#人工智能#云计算
AI 企业多云存储架构实践 | 深势科技分享

2020 年末,谷歌旗下 DeepMind 研发的 AI 程序 AlphaFold2 在国际蛋白质结构预测竞赛上取得惊人的准确度,使得“ AI 预测蛋白质结构”这一领域受到了空前的关注。今天我们邀请到同领域企业,深势科技为大家分享其搭建基础平台时的实践与思考。AI 场景中的使用的数据有哪些新特点?混合云架构如何与超算平台结合?为何会选择 JuiceFS?深势科技成立于 2018 年,是 “AI f

#人工智能#云原生#云计算 +1
AI 场景存储优化:云知声超算平台基于 JuiceFS 的存储实践

云知声是一家专注于语音及语言处理的技术公司。**Atlas 超级计算平台是云知声的计算底层基础架构,为云知声在 AI 各个领域(如语音、自然语言处理、视觉等)的模型迭代提供训练加速等基础计算能力。**Atlas 平台深度学习算力超过 57 PFLOPS(5.7 亿亿次/秒,是的你没有看错,是亿亿次]),深度学习算力是衡量一个 AI 平台计算性能的核心指标。除了满足公司内部的业务需求,平台也为外部企

#人工智能#机器学习#hdfs +1
贝壳找房: 为 AI 平台打造混合多云的存储加速底座

贝壳在机器学习平台建设方面起步较早,因此我们可以利用这些成熟的技术和框架来优化模型管理和分发。例如,我们已经成功将 JuiceFS 等技术应用于模型存储和管理中,进一步提升了系统的效率和稳定性。我们基于 JuiceFS 的架构设计了一套 AI 模型仓库方案。

文章图片
#人工智能#运维#云原生
    共 19 条
  • 1
  • 2
  • 请选择