logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

机器翻译-基础概念

1、机器翻译    机器翻译(machine translation, MT)是用计算机来实现不同语言之间翻译的技术。被翻译的语言通常称为源语言(source language),翻译成的结果语言称为目标语言(target language)。机器翻译即实现从源语言到目标语言转换的过程,是自然语言处理的重要研究领域之一。    机器翻译通常使用机器学习技术将大量文本从支持的语言翻译成支持的语言,即

#机器翻译#自然语言处理#人工智能
EUREKA: HUMAN-LEVEL REWARD DESIGN VIACODING LARGE LANGUAGE MODELS

大型语言模型(LLMs)在顺序决策任务中作为高级语义规划器表现出色。然而,利用它们来学习复杂的低级操控任务,例如灵巧的笔旋转,仍然是一个未解决的问题。我们弥补了这一基本差距,并提出了Eureka,这是一个由LLMs驱动的人类水平奖励设计算法。Eureka利用了最新LLMs的卓越能力,如零样本生成、代码编写和上下文中的改进,来执行奖励代码的进化优化。生成的奖励可以通过强化学习用于获取复杂技能。Eur

文章图片
#语言模型#人工智能#自然语言处理
Sequential Modeling Enables Scalable Learning for Large Vision Models

本文提出了一种新颖的顺序建模方法,可以在不使用任何语言数据的情况下学习大型视觉模型(LVM)。为此,我们定义了一种通用格式,“视觉句子”,在这种格式中,我们可以表示原始图像和视频以及带注释的数据源,如语义分割和深度重建,而无需超出像素之外的元知识。一旦这种广泛的视觉数据(包含(420)亿个tokens)被表示为序列,就可以训练模型以最小化下一个token预测的交叉熵损失。通过在不同规模的模型架构和

文章图片
#人工智能#计算机视觉
python opencv-3.0 SIFT/SURF 特征提取与匹配

一、环境准备目前 Opencv有2.x 和 3.x 版本,两个版本之间的差异主要是一些功能函数被放置到了不同的功能模块,因此大多数情况两个版本的代码并不能通用。建议安装 Anaconda,自行下载相应版本。直接命令安装Opencv3,lake: conda install -c menpo opencv3pip install lake 二、SIFT/SURF 特征提取与匹配# cod

#opencv#python
验证码——python去除干扰线

一、验证码识别的概念机器识别图片主要的三个步骤为消去背景、切割字符、识别字符。而现有的字符验证码也针对这三个方面来设计强壮的验证码。以下简图帮助大家理解验证码识别的流程:二、处理流程其中最为关键的就是好图像处理这一步了。图像处理功能模块包括图像的灰度化、二值化、离散噪声点的去除、倾斜度校正、字符的切割、图像的归一化等图像处理技术 。1、 图像的灰度化由于 256 色的位图的调

#python#图像处理
利用python内置函数,快速统计单词在文本中出现的次数

python中包含许多标准编程数据结构,如list(列表),tuple(元组)、dict(字典)和set(),如果现有的数据类型不能满足需求,可以派生某个内置类型进行定制,或者使用collections中定义的某个抽象基类作为起点构建一个新的容器类型。collections模块包含除内置list,dict,tuple 以外的其它容器数据类型。counter作为一个容器,可以跟踪相同的值增加了多少次

#python#数据结构
深度学习系列(3.2)——神经网络-sigmoid 神经元

1、weights、bias 参数学习我们希望有一种学习算法,它能够自动地调整网络中的权重因子和偏置。但是,我们怎样才能设计出这样的算法神经网络?可以通过学习来解决一些问题。假如,网络的输入是从扫描的原始像素数据,亦或是手写数字的图像。我们希望通过网络可以自动地学习权重和偏差,使输出从网络正确分类的数字。假设我们对网络上的一些权重(或偏置)做一些小的调整,并且希望网络上权重因子和偏差也仅有较小的

#神经网络#深度学习
深度学习系列(3.1)——神经网络-感知机(Perceptrons)

1、神经网络的起始——感知器(perceptrons)说到神经网络,先要讲的当然是 感知器 ,感知器 在上世纪50年代末和60年代初由科学家 Frank\ Frank Rosenblatt 取得了进展,灵感来自早期由 Warren\ Warren McCulloch\ McCulloch与 沃尔特·皮兹 的神经研究工作。如今,越来越多的算法使用人工神经元模型,在许多现代神经网络的研究中,主要

#神经网络#深度学习
机器学习xgboost实战—手写数字识别

1、xgboost 安装安装问题这里就不再做赘述,可参考前面写的博文:http://blog.csdn.net/eddy_zheng/article/details/501845632、手写数字识别这里先说明下,xgboost用作手写字符的分类效果并不是最好的,这里仅仅作为一个教学的实例。本文中用的数据集来自kaggle 的新手入门数字识别(https://www.kaggle.com

#机器学习
机器学习数据集(持续更新)

1.手写数字数据集百度云盘:手写数字 .csv 格式,链接: https://pan.baidu.com/s/1Wg2fKqBoeXiNJ3c8K4DnDg 密码: 7wmq百度云盘:手写数字.jpg 格式,http://pan.baidu.com/s/1mgTsYtM(包含转换的LMDB格式)百度云盘:毒蘑菇数据集,http://pan.baidu.com/s/1sjTP2ax百...

#机器学习
    共 19 条
  • 1
  • 2
  • 请选择