logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)

无人机物流作为解决"最后一公里"配送难题的关键技术,其路径规划需应对复杂城市环境中的动态障碍物、天气变化、续航限制等挑战。基于Q-learning的强化学习算法通过无模型学习机制,在无需预先构建环境模型的情况下,可自适应动态调整路径策略。本文系统梳理了Q-learning在无人机物流路径规划中的技术实现路径,结合三维栅格建模、多目标奖励函数设计、动态探索策略等关键技术,验证了其在路径最优性、收敛速

#无人机#python#开发语言 +1
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)

无人机物流作为解决"最后一公里"配送难题的关键技术,其路径规划需应对复杂城市环境中的动态障碍物、天气变化、续航限制等挑战。基于Q-learning的强化学习算法通过无模型学习机制,在无需预先构建环境模型的情况下,可自适应动态调整路径策略。本文系统梳理了Q-learning在无人机物流路径规划中的技术实现路径,结合三维栅格建模、多目标奖励函数设计、动态探索策略等关键技术,验证了其在路径最优性、收敛速

#无人机#python#开发语言 +1
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)

国家学生体质健康标准》的颁布,有效地促进了大中小学生关注自身体质健康的发展,激励学生积极进行身体锻炼。通过在体育场地周边安装摄像头,可以对学生的体育动作进行实时捕捉,以便对学生的运动姿态进行分析。例如,在立定跳远教学中,通过记录并分析学生起跳瞬间的腿部发力动作、手臂摆动轨迹、身体腾空姿态以及落地姿势等一系列身体变化的细节数据,可以帮助教师全面了解每个学生动作的优点和不足,从而给出针对性的改进方案。

#人工智能#支持向量机
无人机启用的无线传感器网络中的节能数据收集(Matlab代码实现)

在无线传感器网络中,利用无人机(UAV)作为传感器节点(SNs)的移动数据收集器是一种节能的技术,可以延长网络的寿命。在本文中,考虑了传感器节点和无人机之间的一般衰落信道模型,我们联合优化传感器节点的唤醒时间表和无人机的轨迹,以最小化所有传感器节点的最大能量消耗,同时确保可靠地从每个传感器节点收集所需数量的数据。我们将我们的设计建模为一个混合整数非凸优化问题。通过应用逐步凸优化技术,提出了一种高效

#无人机#网络#matlab +1
【两阶段鲁棒优化问题】用列和约束生成方法求解两阶段鲁棒优化问题(Matlab代码实现)

两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。

#matlab#开发语言#支持向量机
【两阶段鲁棒优化问题】用列和约束生成方法求解两阶段鲁棒优化问题(Matlab代码实现)

两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。

#matlab#开发语言#支持向量机
【column-and-constraint generation method[CCG]】两阶段鲁棒优化(Python代码实现)

两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。

#python#算法#人工智能 +1
计及需求响应的改进灰狼优化算法求解风、光、柴、储容量优化配置(Matlab代码实现)

参考文献:在偏远地区和远离内陆的海岛,由于连接大电网建设成本高、技术难度大,通常选择柴油发电机供电,但存在燃料运输成本高、价格波动大、环境污染严重等问题,难以保障上述地区稳定的电力供应。相比柴油发电机而言,这些地区往往拥有丰富的风、光等可再生清洁资源。因此,因地制宜地建设以风、光可再生能源为核心的独立微电网是解决上述地区供电问题的重要途径之一。对独立微电网进行电源容量配置是系统优化设计的重要内容之

#算法#matlab#开发语言 +1
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)

在DQN + 人工势场的避障控制中,首先根据环境信息构建人工势场,将障碍物视为斥力源,目标点视为引力源。然后,将势场信息作为DQN的输入状态之一,与原始的环境状态(如位置、速度等)一起输入到DQN网络中。DQN网络根据输入状态输出每个动作的价值,智能体根据这些价值选择最优动作进行执行。

#python#pytorch#神经网络 +1
    共 32 条
  • 1
  • 2
  • 3
  • 4
  • 请选择