登录社区云,与社区用户共同成长
邀请您加入社区
约瑟夫环的数学推导(9步简洁易懂的推导)证明过程尽量写的简洁、易懂,参考自文章:这或许是你能找到的最详细约瑟夫环数学推导!约瑟夫环问题是一个数学问题。我们定义一个函数f(n, k)表示:在n个人围成的环中,从1开始数,数到k的人被杀掉,然后接着从1开始数,直到只剩下一个人,幸存者的编号就是f(n, k)。1、假设我们把n个人从0开始编号,分别为0, 1, 2, …, n-2, n-1;2、那么很明
网站:https://www.desmos.com/calculator?lang=zh-CN左侧可以填写函数名左键拖动图形按住shift键,通过滚轮来对不同轴进行缩放。
vsipl软件中间件说明文章目录vsipl软件中间件说明1、软件概述1.1标识2、软件模块概要设计2.1基本数据类型2.2结构体设计1、软件概述1.1标识标识号:xxx名称:基于DSP算法库的vsipl软件中间件设计方案注:蓝色字体为DSP库函数用不到的参数或者对象成员。2、软件模块概要设计2.1基本数据类型a)布尔类型typedefsigned intvsip_scalar_bl;b)整型typ
10^^^^100
BLS签名算法概述和代码实现
数学建模,线性规划,整数规划,图与网络,插值与拟合,微分方程,数理统计,支持向量机,多元分析,偏最小二乘法回归分析,综合评价
代数系统笔记:(1)代数系统(2)群(3)格(4)布尔代数
概览推理的定义推理的定义推理的规则推理方法↓( 直接证明法规则cp证明法 间接证明法)推理的定义:推理的有效性≠正确性推理的有效性=命题的前提为真证明推理的判定定理,即证明公式为永真公式判定方法有:真值表技术公式转化法主析取范式法例:推理定律——基本蕴含关系推理规则使用已知条件时很自由 想先用那个用哪个要找准切入点演绎的基本形式P是已知条件I基本蕴含关系...
最简牛熊指数理论:上涨看2;下跌看/2。分四级。95.79开始上证指数,所以96222=768;962222=1536,这是明显的大牛市。第四级减速改变规律了,因此应按照三级加上空转考虑。空转计算的仅仅是下限支撑幅度,说明这个行情如此激烈。四级计算是1536,并未达到。实际行情到达1429.01。说明,第四级已经开始控制速度,第四级也就不是大牛特征了。实际回调到386.85,仅仅算二级的一个调整。
曲线y=(x−1)(x−2)2(x−3)3(x−4)4y=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4}y=(x−1)(x−2)2(x−3)3(x−4)4的一个拐点是()A.(1,0)B.(2,0)C.(3,0)D.(4,0)解析:此题选C,设g(x)=(x−1)(x−2)2(x−4)4g(x)=(x-1)(x-2)^{2}(x-4)^{4}g(x)=(x−1)(x−2)2(x−
简单来说,一个自治系统(或可说是一个自治差分方程)就是一个不明确依赖于自变量的常微分方程组。当变量为时间时,它们也称为时不变系统。物理学中的许多定律(通常将自变量假定为时间)都表示为自治系统,因为它假定现在持有的自然定律与过去或将来的任何一点都相同。自治系统与动力系统密切相关。 任何自治系统都可以转换为动力系统,并且使用非常弱的假设,就可以将动力系统转换为自治系统。...
5月28日下午,Jensen参加了YMO青少年奥林匹克数学竞赛复赛
(这一章算赠送的,它本来可以是另外一本书。可是对于看不懂四维股市数学理论的,出于对读者的感谢,我总得给个交代。这一章简单,简单的超乎想象!)《淮南子》中记载:“共工撞触不周山,导致天塌西北,地陷东南。女娲补天。”如果这是一个事实,那应该是一次大型火山喷发导致地貌忽然改变的记录。忽然隆起的火山,导致天上的日月星辰都滑向西北方,地上的流水泥沙都流向了东南方。如果更离谱的想,那应该是某个小行星撞上地球,
∪ bai并∩ 交⊂ A属于duB⊃ A包括B∈ a∈A,a是A的元素⊆ A⊆B,A不大于zhiB⊇ A⊇B,A不小于BΦ 空集R 实数N 自然数Z 整数Z+ 正整数Z- 负整数
函数的连续和一致连续
可数与不可数,Schroeder−BernsteinSchroeder-BernsteinSchroeder−Bernstein定理AAA.实数的性质A1)A1)A1) 假设非空集合X⊂RX ⊂ RX⊂R有上界并且实数MMM是XXX的上界。证明,如下两个命题等价:– M=supXM=\sup XM=supX– 对任意的ε>0ε>0ε>0,都存在x∈Xx∈Xx∈X,使得x>
今天下午Jensen参加了今年的YMO青少年奥林匹克数学竞赛总决赛,题目好像不简单,反正分数比去年六年级时低,而且六年级得到的才是一个银牌。所以,基本预计今年能得一个银牌也就不错了。PS:1月29日,收到金牌和证书,有点出人意料。看来初中的题目的确比六年级难了,否则,也不可能分数低了但是奖牌等级高了。也算是春节前的意外惊喜,也是Jensen在YMO总决赛第一次拿到金牌。...
离散数学是一门重要基础学科,希望HUNer们努力学好。一、命题逻辑等值演算。一、命题逻辑等值演算。
总而言之,作为一名大模型工程师,深入了解CPU和GPU的工作原理、优化技巧和性能特性,将让你在大型模型的训练和推理中更具竞争力,提高工作效率和性能。掌握CPU和GPU的知识,将使你能够设计和优化适用于特定硬件平台的算法和模型架构,实现更高效的计算和更快速的推理速度。作为大模型工程师,了解CPU和GPU的最新技术动态和趋势,能够让你及时应对新技术的挑战和机遇,保持在领域的前沿。懂得CPU和GPU的特
移动语义和完美转发是现代C++性能优化的核心工具。通过理解右值引用、移动构造函数、std::move和std::forward的工作原理,开发者可以编写出更高效、更现代的C++代码。这些特性不仅是语言层面的进步,更是C++在面对高性能计算需求时的重要武器。
蒙特卡罗法(又称统计试验法)是描述装备运用过程中各种随机现象的基本方法,而且它特别适用于一些解析法难以求解甚至不可能求解的问题。用蒙特卡罗法来描述装备运用过程是1950年美国人约翰逊首先提出的。这种方法能充分体现随机因素对装备运用过程的影响和作用。更确切地反映运用活动的动态过程。在装备效能评估中,常用蒙特卡罗法来确定含有随机因素的效率指标,如发现概率,平均毁伤目标数等;模拟随机系统中的随机现象并计
定义:f(x)f(x)f(x)称为仿射函数,如果它满足 f(x)=a⋅x+b,a∈Rn,b∈R,x∈Rnf(x) =a\cdot x+b, a\in\mathbf R^n,b\in\mathbf R,x\in\mathbf R^nf(x)=a⋅x+b,a∈Rn,b∈R,x∈Rn举个例子:如果xxx是一个点,那么f(x)f(x)f(x)是一条线如果xxx是一条线,那么f(x)f(x)f(x...
推理规则是高等数学中重要的数学体系之一。本人此博客主要介绍8中常见的推理规则以及一些重要习题的解析,希望对大家有帮助!!!
计算电动力学程序设计----运动带电粒子的势和辐射场
这极大地降低了AI应用的技术壁垒,使得非专家用户也能利用强大的机器学习技术解决实际问题,扩大了AI的普及范围和应用场景。总结而言,Python作为一把关键的“钥匙”,正以其独特的优势,持续解锁人工智能与数据科学的无限可能。随着技术的不断进步和社区的持续贡献,Python必将在塑造智能化未来的道路上发挥更加重要的作用。Python的易学性使其成为入门人工智能和数据科学的优选语言。其简洁的语法、强大的
有时需要求二元一次方程"ax^2+bx+c=0"的根,其实这就是单纯的数学问题了,需要考虑几种情况:
通过李代数求导进行位姿估计(附:参考高翔-视觉slam14讲)
数据结构预算算法是计算机科学中一个至关重要的研究领域,它专注于如何高效地管理和操作数据,以优化计算资源的消耗,尤其是时间和空间复杂度。近年来,随着大数据、人工智能和物联网的迅猛发展,对高效算法的需求呈指数级增长。预算算法不再仅仅追求理论上的最优解,更注重在实际应用场景中的性能表现和资源约束下的平衡。研究者们致力于开发新型数据结构和与之配套的算法,以期在有限的计算预算(如时间、内存、能源)内处理日益
前言本人跨专业考研上岸网络空间安全专业,本科期间除了C语言外完全0基础,为了研究生期间跟得上学校进度,开启自学之路。在知乎上找了找经验,买了本《深入浅出密码学》开始入门密码学。看了不到两章,就被用到的整数环、mod运算给难住了,遂又开始补习密码学所需要的数学基础。为了保持自己的学习动力和加强记忆,开始随学习进度更新学习笔记和个人理解。Tip:课程为哈尔滨工业大学韩琦老师所讲的信息安全数学基础课程,
2020/3/14用matlab求二重积分题目如下:已知,其中D是由圆周及坐标轴所围成的第一象限内的闭区域法一:积分区域用不等式表示为二重积分可化为二次积分matlab中输入命令syms x yint(int(sqrt(1-x^2-y^2/1+x^2+y^2),y,-sqrt(1-x^2),sqrt(1-x^2)))得到ans =asin(x...
文章目录欧拉定理的证明前提知识欧拉定理:证明:欧拉定理的证明前提知识(a,b)(a,b)(a,b)符号表示aaa与bbb的最大公因数,若(a,b)=1(a,b)=1(a,b)=1,则aaa与bbb互素φ(m)\varphi(m)φ(m)是指[1,m][1,m][1,m]中与m互素的数的个数。[1,m][1,m][1,m]中所有与mmm互素的数构成模mmm的简化剩余系。若mmm是一个正整数,aaa是
基本概念所谓乘法逆元,就是两个整数a和x相乘再用一个(非1正整数)数p对它们取模,若取模后所得的值等于1,那么x和a在模p条件下互为乘法逆元.用同余方程表达即:a∗x≡1(mod p){a*x≡1(mod~p)}a∗x≡1(mod p),用一般方程表达为:a∗x−k∗p=1,(k∈z){a*x-k*p=1,(k∈z)}a∗x−k∗p=1,(k∈z).(a存在逆元时有一充要条件:
《代数学基础与有限域》第一章 1.1群
目的是要在函数间建立一种相对的级别
论文摘要 本文提出了一种基于代数分解和公共子表达式消除的多项式表达式优化方法,旨在减少计算复杂度。通过将多项式表示为矩阵形式,系统性地提取核心(kernels)和公共子表达式(co-kernels),构建Kernel Cube Matrix(KCM)和Cube Incidence Matrix(CIM)分别处理多项式级和单项式级的公共子表达式。核心贡献包括:(1) 设计价值函数量化子表达式提取的收
安全多方计算 SMPC 和同态加密 FHE 已经成为隐私计算领域内不可缺少的密码学基础。二者都能实现对密文的直接计算,但是二者又各有不同。本人在知乎上有同态加密、格密码、安全多方计算、近世代数的专栏,全是干货,如果想学习相关知识,可以直接点击以下链接。我在知乎等大家,我们一起学习,一起进步。以下是所有专栏的主页,包含同态加密、格密码、安全多方计算、近世代数https://www.zhihu.com
数学·包含学科14 逻辑与基础▪1410:演绎逻辑学▪1420:证明论▪1430:递归论▪1440:模型论▪1450:公理集合论▪1460:数学基础▪1499:数理逻辑与数学基础其他学科17数论▪1710:初等数论...
我一直用RGB模型去看色彩的各种指标,包括饱和度,亮度,色相什么的。感觉没必要去转什么HSI公式,啰嗦还不直观。很少接触HSI模型,今天看到了上图的公式就想演算一下公式是否经得起考验带入我的常用公式值,姑且最小值是X,那么S=1-3X/(R+G+B),而R+G+B=X+X+X+SN,这里SN是我常用的色彩浓度,SN=Max(r,g,b)-X,当然了我更喜欢的还有公式SN=SP+ZH;简单带入计算,
AIC(赤池信息准则)、SC(施瓦茨准则)、当增加要用的变量个数k,能够使得AIC的值减少时才能继续增加,直到AIC值增加时,不可添加。
def fact(n):if n == 0:return 1else:return n * fact(n - 1)num = eval(input("请输入一个整数:"))print(fact(abs(int(num))))
关于穿越频率、相位裕度、增益裕度的概念以及简单的应用,分析就到此为止。前文中有些计算问题,可能是部分读者关心的,例如三阶RC电路的传递函数应该如何计算?前文中,是直接使用仿真工具做AC交流扫描获得,也就是没有表达式。我们知道,如果想要精确的洞悉物理世界的现象,最好就是建立数学模型,在数学模型之上还能导出各变量之间的表达式。正如上一期我们分析RLC电路的特性时,列出了时域表达式、频域表达式、S域表达
本题大致与P3一样,但是把e提高到了5,这样就不好再去展开一个5次多项式了,回顾P3的方法,其实我们就是在从题目中关于m的两个高次多项式中求出了他们的一个公因式,这个公因式是一次的,可以直接解出m。我们点击右上角的 New ,然后选择 sagemath,就可以写sage代码了,sage的语法与python一样,但sage多了一些东西我会在注释里说明。要注意这种方法要求我们已知的信息要大于。运行得f
题目及论文在资源中
抽象代数
——抽象代数
联系我们(工作时间:8:30-22:00)
400-660-0108 kefu@csdn.net