
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
本文聚焦无模型自适应预测控制(MFAPC)与无模型自适应迭代学习控制(MFAILC)的数值验证仿真研究。通过构建基于紧致形式动态线性化(CFDL)的仿真程序,分别验证了MFAPC在非线性系统预测跟踪中的有效性,以及MFAILC在非线性系统迭代轨迹跟踪中的性能。仿真结果表明,两种方法均能有效处理非线性系统控制问题,为复杂工业过程的控制提供了新的思路。
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
多智能体系统的事件驱动策略是受到未来使用资源有限的嵌入式微处理器的启发,这些微处理器将收集信息并触发个体智能体控制器的更新。本文考虑的控制器更新是事件驱动的,取决于某个测量误差与状态函数范数的比值,并应用于一阶一致性问题。首先考虑了集中式方案,然后是其分布式对应方案,在该方案中,智能体仅需要知道其邻居的状态即可实现控制器。随后,结果被扩展到自触发设置,其中每个智能体在上一次更新时计算其下一次更新时

优势:DDPG通过端到端学习连续控制策略,避免了传统方法对精确模型的依赖,在非线性、高维状态空间中表现优异。其在倾转旋翼无人机中的应用已覆盖姿态控制、路径规划与多模态过渡等场景。挑战训练效率:复杂动力学下的样本需求量大,可结合优先级经验回放(PER)加速收敛。鲁棒性提升:引入TD3(双延迟DDPG)抑制Q值高估,或结合模型预测控制(MPC)增强抗干扰能力。硬件部署:需优化算法实时性,适配嵌入式飞控

本文复现了IEEE顶刊中关于水下机器人(AUV)路径规划与模型预测控制(MPC)路径跟踪控制的研究成果。通过构建包含路径规划与MPC跟踪控制两个核心模块的优化框架,结合AUV水动力学模型,在2D空间内实现了高精度路径跟踪。研究验证了该框架在复杂海洋环境下的鲁棒性与适应性,为AUV自主导航与任务执行提供了理论支撑。
频谱感知数据:包括信道占用状态、信噪比(SNR)、干扰水平等。网络上下文信息:如SU位置、业务类型(实时/非实时)、QoS需求。

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
全覆盖路径规划是机器人、无人机及自动化设备在环境监测、农业喷洒、建筑3D打印等领域的关键技术。传统螺旋规划虽能实现区域遍历,但存在路径冗余、复杂环境适应性差等问题。本文提出一种融合A*算法的螺旋式全覆盖路径规划方法,通过构建分层栅格地图、设计动态启发函数及优化螺旋扩展策略,实现复杂环境下的高效、无遗漏覆盖。实验表明,该方法在路径长度、覆盖率及死点数量等指标上显著优于传统螺旋算法,为动态环境下的全覆







