logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

深度学习-AlexNet(第一个深度卷积网络)

AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今,如使用GPU进行训练,使用ReLU 作为非线性激活函数,使用 Dropout 防止过拟合,使用数据增强来提高模型准确率等。

文章图片
#深度学习#计算机视觉#神经网络 +2
深度学习-AlexNet(第一个深度卷积网络)

AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今,如使用GPU进行训练,使用ReLU 作为非线性激活函数,使用 Dropout 防止过拟合,使用数据增强来提高模型准确率等。

文章图片
#深度学习#计算机视觉#神经网络 +2
机器学习-主成分分析PCA降维

主成分分析(Principle Component Analysis,PCA)是常用的降维方法,用较少的互不相关的新变量来反映原变量所表示的大部分信息,有效解决维度灾难问题。

文章图片
#人工智能#数据分析#python
深度学习-神经网络(Pytorch应用)

神经网络中的隐含层可以分为卷积层、池化层、激活层、线性层等,本文将介绍相关原理及Pytorch中代码应用。

文章图片
#深度学习#神经网络#pytorch +2
深度学习-神经网络(Pytorch应用)

神经网络中的隐含层可以分为卷积层、池化层、激活层、线性层等,本文将介绍相关原理及Pytorch中代码应用。

文章图片
#深度学习#神经网络#pytorch +2
深度学习-AlexNet(第一个深度卷积网络)

AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今,如使用GPU进行训练,使用ReLU 作为非线性激活函数,使用 Dropout 防止过拟合,使用数据增强来提高模型准确率等。

文章图片
#深度学习#计算机视觉#神经网络 +2
使用docker部署hbase-简单三步足矣

hbase从安装到使用,就是这么简单。文章目录安装docker拉取镜像运行测试

#hbase#docker#centos +2
深度学习-神经网络(Pytorch应用)

神经网络中的隐含层可以分为卷积层、池化层、激活层、线性层等,本文将介绍相关原理及Pytorch中代码应用。

文章图片
#深度学习#神经网络#pytorch +2
深度学习-AlexNet(第一个深度卷积网络)

AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今,如使用GPU进行训练,使用ReLU 作为非线性激活函数,使用 Dropout 防止过拟合,使用数据增强来提高模型准确率等。

文章图片
#深度学习#计算机视觉#神经网络 +2
动态规划-RMQ问题(ST算法)

RMQ(Range Minimum/Maximum Query)问题,是求区间最大值或最小值,即范围最值问题,有一种更简便的ST算法,预处理复杂度是O(nlogn),查询O(1)。文章目录RMQ问题ST算法模板例题P2251 质量检测P1816 忠诚P2216 [HAOI2007]理想的正方形

文章图片
#动态规划#算法#数据结构
    共 23 条
  • 1
  • 2
  • 3
  • 请选择