
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
TensorFlow2.X 搭建卷积神经网络(CNN),实现人脸识别(可以识别自己的人脸哦!搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。

TensorFlow2.X 搭建卷积神经网络(CNN),实现人脸识别(可以识别自己的人脸哦!搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。

TensorFlow2.X 搭建卷积神经网络(CNN),实现水果识别。搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。网络结构:数据集:‘freshapples’:‘新鲜苹果’,‘freshbanana’:‘新鲜香蕉’,‘freshoranges’:‘新鲜橙子’,‘rottenapples’:‘腐烂
TensorFlow2.X 搭建卷积神经网络(CNN),实现交通标志识别。搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。

上一篇文章介绍了基于卷积神经网络的交通标志分类识别Python交通标志识别基于卷积神经网络的保姆级教程(Tensorflow),并且最后实现了一个pyqt5的GUI界面,并且还制作了一个简单的Falsk前端网页实现了前后端的一个简单交互,只能实现单张交通标志图像的分类,没有位置检测功能,并且不支持视频的实时检测识别,总体上来讲较为简单。本文介绍一个交通标志识别的进阶项目–基于Yolov5的交通标志

【代码】python计算相关系数。