
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
随着物联网设备的指数级增长,移动通信需求呈现爆发式增长,推动了网络架构的不断演进。为应对不同场景下的数据密度与服务需求,移动通信网络逐步采用宏基站与小基站混合部署的异构蜂窝网络结构,其中宏基站负责大范围的覆盖,微基站用于在高密度区域提供高效的无线接入。两层的异构网络可以提升网络容量、覆盖范围和用户体验,尤其是在 5G 及未来网络中,以支持大规模的设备接入和高数据传输速率。
针对能源危机和环境不断恶化的情形下,以光伏发电、风力发电、潮汐能等清洁能源发电技术被广泛应用,其发电方式便捷、满足负荷增长需求、绿色友好以及便于偏远地区供电的特点被人们大量发展利用。DG大量并入配电网络会有一些负面效应,会使故障后短路电流的大小及方向发生改变,分布式发电机节点会使配电网的结构变得复杂,这不仅导致传统继电保护装置、故障区段的定位算法、以及恢复重构研究方法遇到难题,而且还会使电网安全性
文献来源:光伏和风电等分布式电源 (distributed generation,DG)高渗透率接入,使传统的单向辐射状无源配电网逐步转变为含多能供电、必要时辅助以弱环状拓扑结构运行的有源配电网[1-3]。间歇性分布式电源注入功率呈现较强的不确定性,传统配电网网络重构技术面临很多新的挑战[4-5]。需要对多类型分布式电源注入功率的不确定性进行合理分析与建模,并在网络重构模型中予以考虑,以确保配电网
在能源和人工智能领域具有重要意义。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),通过引入门结构解决了传统RNN中的“长期依赖”问题,从而能够有效捕捉时间序列数据中的长期依赖关系和时序特征,这对于风电功率预测尤为关键。
实验采用公开的多模态MRI影像数据集,如BRATS数据集,该数据集包含了多种模态的MRI影像(T1、T1c、T2、FLAIR)以及对应的脑肿瘤标注信息。将数据集划分为训练集、验证集和测试集,以保证实验结果的客观性和可靠性。
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
多无人机协同追捕-逃逸问题属于多智能体动态博弈领域,具有军事防御、边境巡逻、灾难救援等应用场景。传统集中式控制依赖全局信息,存在通信延迟、单点故障等问题。分散式策略通过局部感知与自主决策,可提升系统鲁棒性与适应性。
受无人机在商业领域应用的影响,多无人机(MultiUAV)路径规划已引发广泛关注。然而,当前的研究往往未能全面考量这一复杂问题中固有的现实约束条件。本报告研究了在城市环境中执行导航任务的智能体的高效路径规划问题。每个智能体均承担配送任务,需先移动至起始点,再前往后续目标位置,同时要绕过障碍物并避免与其他智能体发生碰撞。







