logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

计算机视觉——基于改进UNet图像增强算法实现

在低光照条件下进行成像非常具有挑战性,因为光子计数低且存在噪声。高ISO可以用来增加亮度,但它也会放大噪声。后处理,如缩放或直方图拉伸可以应用,但这并不能解决由于光子计数低导致的低信噪比(SNR)。短曝光图像受到噪声的影响,而长曝光可能会引起模糊,通常也不切实际。已经提出了各种去噪、去模糊和增强技术,但在极端条件下,如夜间视频速率成像,它们的有效性是有限的。有物理手段可以增加低光照下的SNR,包括

文章图片
#计算机视觉#算法#人工智能
ACC-UNet——基于Transformers与UNet的语义分割模型

在过去十年中,计算机视觉领域经历了一场根本性的变革,这主要归功于视觉转换器(Visual Transformers)的引入。这一变革同样影响了医学成像领域,其中UNet架构通过采用转换器技术进行了重要重构,成为了该领域内极具影响力的模型之一。近期的研究,如ConvNext,重新评估了卷积模型在视觉任务中的有效性,这一工作启发了我们对现有技术的进一步改进。我们的目标是提升传统的纯卷积UNet模型,使

文章图片
深度学习基础——每个开发人员都应该了解 GPU 计算的知识

CUDA 是 Nvidia 提供的编程接口,用于为其 GPU 编写程序。在 CUDA 中,您以类似于 C/C++ 函数的形式表达要在 GPU 上运行的计算,该函数称为内核。内核对数字向量进行并行操作,这些向量作为函数参数提供给它。一个简单的例子是执行向量加法的内核,即,一个内核将两个数字向量作为输入,将它们按元素相加并将结果写入第三个向量。为了在 GPU 上执行内核,我们需要启动许多线程,这些线程

文章图片
#人工智能#深度学习#GPU +1
ClimODE——使用神经网络ODE 进行天气预报

这项研究提出了用于天气预报的神经 ODE 系统 ClimODE,该系统的设计特点是通过局部卷积运算获取局部依赖关系,通过全局关注机制获取全局依赖关系,从而正确获取对天气预报非常重要的多个空间尺度的相互作用。因此,我们设计了一种 "全局依赖性 "算法,通过局部卷积运算来获取依赖性,而通过全局关注机制来获取全局依赖性。因此,尽管参数比传统方法少,但它的性能却优于传统方法,并在全球和区域层面实现了最先进

文章图片
#神经网络#人工智能#深度学习 +1
计算机视觉——手机目标检测数据集

这是一个手机目标检测的数据集,数据集的标注工具是labelimg,数据格式是voc格式,要训练yolo模型的话,可以使用脚本改成txt格式,数据集标注了手机,标签名:telephone,数据集总共有1960张,有一部分是直实数据,有一部分是是真实数据。

文章图片
#计算机视觉#目标检测
Textfocals ——基于大言模型的用户驱动型文本改进工具让用户在审阅自己的写作时对其进行修改

大规模语言模型可以生成媲美专业作家撰写的文本。目前使用的对话技术主要有两种:一种是交互式(如 OpenAI 的 ChatGPT 和 Google 的 Gemini),另一种是预测性文本补全(如 GitHub Copilot)。这些技术在许多任务中表现出色。然而,另一方面,在写作中,它们将部分或全部的创造性决策留给了系统。

文章图片
#人工智能#深度学习#自然语言处理
计算机视觉单阶段实例分割实践指南与综述

位置敏感的分数图可以被视为原型掩码,但 IntanceFCN 和 FCIS 使用一组固定的空间池操作来组合位置敏感的原型掩码,而不是学习线性系数。(Bottom-up Object Detection by Grouping Extreme and Center Points,CVPR 2019)通过使用四个极值点(因此是一个具有8个自由度的边界框而不是传统的4个DoF)进行检测,并且这种更丰富的

文章图片
#计算机视觉#目标跟踪#人工智能 +2
LlaSMol—— 建立一个大型、高质量的指令调整数据集 SMolInstruct 用于开发一个化学任务的大语言模型

化学是一门基础科学,支撑着现代生活的许多方面,包括药物发现、材料科学和能源生产。为促进该领域的研究和应用,图神经网络和变压器模型等深度学习模型已被应用于各种化学任务,如反应预测、逆合成和性质预测。然而,这些模型往往是针对特定任务的模型,很难适应不同的任务。另一方面,GPT-4、Llama 系列和 Mistral 等大型语言模型已成为通用基础模型,并在自然语言处理任务中显示出巨大的能力。然而,当应用

文章图片
#人工智能#自然语言处理#语言模型
探索大语言模型在心理健康状态评估的应用

本文认为,理解他人无法观察到的心理状态的能力,即所谓的心智理论(ToM),可能会在大规模语言模型中自发出现。论文显示,GPT-3 及其后续版本在 ToM 任务方面取得了巨大进步,例如,GPT-4 甚至解决了几乎所有挑战。这表明,语言模型的发展可能反映了人类社会互动、交流、移情、自我意识和道德的重要方面。换句话说,ToM 等高级认知技能可能是语言模型提高语言技能的副产品。

文章图片
#语言模型#人工智能#自然语言处理
    共 29 条
  • 1
  • 2
  • 3
  • 请选择