
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255,当灰度为255的时候,表示最亮(纯白);当灰度为0的时候,表示最暗(纯黑)。灰度化的好处是:相较于彩色图像灰度图像占内存更小,运行速度更快;灰度图像后可以在视觉上增加对比,突出目标区域。

逻辑回归(Logistic Regression)虽然被称为回归,但其实际上是分类模型,并常用于二分类。逻辑回归与线性回归本质上是类似的,相较线性回归只是多了一个Logistic函数(或称为Sigmoid函数)。moreimport numpy as np import matplotlib . pyplot as plt # sigmod函数,即得分函数,计算数据的概率是0还是1;得到y大于等于

图像直方图,是指对整个图像在灰度范围内的像素值(0-255)统计出现频率次数,据此生成的直方图,称为图像直方图或直方图。直方图反映了图像灰度的分布情况,是图像的统计学特征。也可以说,直方图是图像中像素强度分布的图形表达方式,它统计了每一个强度值所具有的像素个数。直方图均衡化是以累计分布函数为核心,将原始图像灰度直方图从比较集中的某个灰度区间,非线性地映射为在全部灰度范围内的较均匀分布,从而增强对比

卷积神经网络(convolutional neural network, CNN),是一类包含卷积计算且具有深度结构的前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。卷积神经网络专门用来处理具有类似网格结构的数据的神经网络。例如,时间序列数据(可以认为是在时间轴上有规律地采样形成的一维网格)和图像数据(可以看作是二维的像素网格)。

在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性,不同子区域的特征呈现较为明显的差异。之前介绍了基于阈值的分割方法,比如Otsu法等;基于边缘检测的分割方法,比如Sobel算子、Canny算子等。












