
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
图计算系统基于顶点和边的方式存储图数据和计算,能够建构任意复杂的网络和模型并存储大量的信息,进而完整且形象地映射分析人员想要研究的问题域。经典的表格结构的数据都能够用图数据来表示,但不是所有的图数据都能够用数组或表格的形式来表示。

Gartner预测,到2025年,生成式人工智能将占所有生成数据的10%。根据《Generative AI :A Creative New World》的分析,AIGC有潜力产生数万亿美元的经济价值。AIGC吸引了全世界的关注同属,知识产权、技术伦理将面临许多挑战和风险。同时,AIGC距离一般人工智能还有很大差距。

2022年的AI领域,基于文本生成图像的AI绘画模型是风头正劲的主角。从2月份的Disco Diffusion开始,4月DALL-E 2和MidJourney邀请内测,5月和6月Google发布了Imagen和Parti两大模型

2023年是人工智能发展的重要转折年,企业正在从业务数字化迈向业务智能化。大模型的突破和生成式人工智能的兴起为企业实现产品和流程的革新提供了先进工具,引领产业迈入智能创新的新阶段。在这个新时代,企业不再仅关注如何增强智能化能力,而更加注重如何利用人工智能实现产品和流程的革新。

ChatGPT是目前最先进的、可以生成类似人类文本的语言模型,但了解向ChatGPT提问的正确方式,以获得所期望的高质量答案,是至关重要的。此外,我们还介绍了几种高级提示技术,如零提示、单个提示和小样本提示、自一致性、种子词提示、知识生成提示、知识整合提示、多项选择提示、可解释的软提示、受控生成提示、问答提示、摘要提示、对话提示、对抗提示、聚类提示、强化学习提示、课程学习提示、情感分析提示、命名实

随着生成式AI应用的迅猛发展,我们正处在前所未有的大爆发时代。在这个时代,深度学习模型的部署成为一个亟待解决的问题。尽管GPU在训练和推理中扮演着关键角色,但关于它在生成式AI领域的误解仍然存在。近期英伟达L40S GPU架构成为了热门话题,那么与A100和H100相比,L40S有哪些优势呢?

一位AI从业者提到,他所在的公司曾考虑使用一家非NVIDIA的GPU厂商,对方的芯片和服务报价更低,也承诺提供更及时的支持,但他们最终判断,使用其他GPU会导致整体训练和开发成本高于使用NVIDIA,并且还需要承担结果的不确定性和花费更多的时间。因此,使用性能较低的GPU越多,计算力的损耗就越大。Transformer基于显著性的注意力机制为输入序列中的任何位置提供上下文信息,使得它具有强大的全局

随着算法的不断优化和创新,GPU算力将在更多未知的领域展现出强大的应用潜力,为人类解决前所未有的复杂问题,创造更多难以想象的价值。它具有较高的时钟频率和复杂的缓存层次结构,能够高效地执行单个线程的指令,对于顺序执行的任务,如操作系统的运行、通用计算中的复杂算法等,表现出色。无论是自然语言处理中的语言模型,还是计算机视觉中的图像识别和目标检测模型,亦或是强化学习中的智能体训练,GPU算力都为其提供了

稳定学习不是单纯地对观测到的训练数据进行拟合,而是试图在非平稳和不可知的测试数据下学习一个性能一致的良好模型。

面向未来,华为将坚持围绕鲲鹏和昇腾,携手产业伙伴共建计算产业生态;坚持“硬件开 放、软件开源、使能伙伴和发展人才”,和产业伙伴共同构筑坚实的算力底座。 共建计算产业,共赢数智时代。
