
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
本文讨论了与非恒定参数的控制系统相关的问题。为了确保系统的响应不变,提出了一种用于永磁同步电机的自适应状态反馈速度控制器。应用了模型参考自适应系统,同时使用Widrow-Hoff规则作为控制器系数的调整机制。描述了与成本函数构建和负责调整状态反馈速度控制器系数的公式相关的必要修改。对所提出的调整机制中唯一的参数——适应增益对系统行为的影响进行了实验检验。文章还包括了所提出的自适应算法的计算资源消耗
在能源和人工智能领域具有重要意义。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),通过引入门结构解决了传统RNN中的“长期依赖”问题,从而能够有效捕捉时间序列数据中的长期依赖关系和时序特征,这对于风电功率预测尤为关键。
实验采用公开的多模态MRI影像数据集,如BRATS数据集,该数据集包含了多种模态的MRI影像(T1、T1c、T2、FLAIR)以及对应的脑肿瘤标注信息。将数据集划分为训练集、验证集和测试集,以保证实验结果的客观性和可靠性。
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关
在动态不确定环境下,无人机集群的分布式估计面临通信噪声、数据丢失、拓扑时变等挑战。本文提出基于信念共识与测量共享的分布式估计框架,通过构建多智能体共享生成模型实现贝叶斯信念更新,结合随机逼近-趋同算法与网络共识机制,解决强噪声、低检测率及杂波环境中的多目标跟踪问题。仿真与实测验证表明,该框架在50%通信丢失率下仍保持92%的估计精度,较传统方法提升37%。
在动态不确定环境下,无人机集群的分布式估计面临通信噪声、数据丢失、拓扑时变等挑战。本文提出基于信念共识与测量共享的分布式估计框架,通过构建多智能体共享生成模型实现贝叶斯信念更新,结合随机逼近-趋同算法与网络共识机制,解决强噪声、低检测率及杂波环境中的多目标跟踪问题。仿真与实测验证表明,该框架在50%通信丢失率下仍保持92%的估计精度,较传统方法提升37%。







