
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
在自定义障碍物场景下,JPS算法能够根据障碍物的形状和位置,合理规划全局路径,DWA算法则能够在局部范围内实现精确避障。实验结果表明,混合控制算法能够有效处理自定义障碍物,规划出合理的路径,确保机器人的安全导航。
Copula是一种将多变量联合分布函数 F(x1,…
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
本文讨论了与非恒定参数的控制系统相关的问题。为了确保系统的响应不变,提出了一种用于永磁同步电机的自适应状态反馈速度控制器。应用了模型参考自适应系统,同时使用Widrow-Hoff规则作为控制器系数的调整机制。描述了与成本函数构建和负责调整状态反馈速度控制器系数的公式相关的必要修改。对所提出的调整机制中唯一的参数——适应增益对系统行为的影响进行了实验检验。文章还包括了所提出的自适应算法的计算资源消耗
在能源和人工智能领域具有重要意义。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),通过引入门结构解决了传统RNN中的“长期依赖”问题,从而能够有效捕捉时间序列数据中的长期依赖关系和时序特征,这对于风电功率预测尤为关键。
实验采用公开的多模态MRI影像数据集,如BRATS数据集,该数据集包含了多种模态的MRI影像(T1、T1c、T2、FLAIR)以及对应的脑肿瘤标注信息。将数据集划分为训练集、验证集和测试集,以保证实验结果的客观性和可靠性。
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效







