
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文针对异常扩散过程(如亚扩散、超扩散)的非局部、长记忆特性,提出基于分数阶差分多智能体2D协作算法(FO-Diff-MAS2D)的分布式反馈控制框架。通过融合“Caputo时间差分+Riesz空间差分”离散格式与质心沃罗诺伊剖分(CVT)优化策略,实现二维分数扩散方程的高精度数值求解与执行器动态位置优化。仿真结果显示,该方法在工业散热、污染物扩散控制等场景中,较传统整数阶控制能耗降低37.2%,
国家学生体质健康标准》的颁布,有效地促进了大中小学生关注自身体质健康的发展,激励学生积极进行身体锻炼。通过在体育场地周边安装摄像头,可以对学生的体育动作进行实时捕捉,以便对学生的运动姿态进行分析。例如,在立定跳远教学中,通过记录并分析学生起跳瞬间的腿部发力动作、手臂摆动轨迹、身体腾空姿态以及落地姿势等一系列身体变化的细节数据,可以帮助教师全面了解每个学生动作的优点和不足,从而给出针对性的改进方案。
两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。
两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。
在DQN + 人工势场的避障控制中,首先根据环境信息构建人工势场,将障碍物视为斥力源,目标点视为引力源。然后,将势场信息作为DQN的输入状态之一,与原始的环境状态(如位置、速度等)一起输入到DQN网络中。DQN网络根据输入状态输出每个动作的价值,智能体根据这些价值选择最优动作进行执行。
最优潮流和基本潮流的比较潮流计算可以归结为针对一定的扰动变量p(负荷情况),根据给定的控制变量u(如发电机的有功出力、无功出力或节点电压模值等),求出相应的状态变量x(如节点电压模值及角度),这样通过一次潮流计算得到的潮流解决定了电力系统的一个运行状态。
RIS技术为DFRC系统提供了全新的性能提升维度,通过联合优化波束形成和资源分配,显著增强了雷达探测精度与通信效率。然而,动态环境适应性、多RIS协同及硬件非理想特性仍是未来研究的核心挑战。随着6G技术发展,RIS有望推动无线通信与雷达感知的深度融合,实现更智能的无线环境重构。📚2 运行结果clcclear allclose allfigure;0];hold on;0];wsr_ris;0];
非支配排序遗传算法(NSGA)是一种多目标优化算法,旨在解决具有多个目标函数的优化问题。NSGA是在遗传算法的基础上发展而来的,它通过一种称为"非支配排序"的策略,将解空间中的个体分为不同的等级,并通过交叉和变异等遗传操作来搜索适应于多个目标的优质解。NSGA首先对种群中的个体进行非支配排序,即根据个体之间的优劣关系将其划分为多个不同的前沿等级。一个个体如果在某个目标函数上优于另一个个体且不劣于另
本研究聚焦于遭受拒绝服务(DoS)攻击的网络物理多智能体系统(CPS)的弹性模型预测控制问题。随着多智能体系统在众多领域的广泛应用,其面临的网络安全威胁,尤其是DoS攻击,对系统的正常运行和稳定性构成了严重挑战。本文旨在构建有效的弹性模型预测控制策略,以提高系统在DoS攻击下的性能和恢复能力,确保系统能持续稳定地运行。
目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基