
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
电-热综合能源系统(EH-IES)是集电能与热能生产、传输、转换、存储和利用于一体的多能耦合系统。电力网络:含常规火电机组、风/光/水电机组、储能设备及输电线路;热力网络:由热源(如热电联产机组CHP)、供热管道(一次管网和二次管网)、水泵及储热罐构成;耦合设备:CHP机组、电锅炉、热泵等实现电能与热能的转换。该系统具有非线性、非凸、高维度的数学模型特性,且热力网络因传输延迟和热惯性具备显著的储能
17级模块化多电平变流器(MMC)是一种高压直流输电(HVDC)系统中常用的电力电子装置。它由多个电容和开关组成,能够将直流电能转换为多个不同电平的交流电能,从而实现高效、可靠的电能传输。17级模块化多电平变流器(MMC)是一种高压直流输电(HVDC)技术,用于将电力从交流电网输送到远距离的地点。它由多个模块组成,每个模块都有自己的电压源和开关装置。MMC利用电容器和开关器件来产生多个电平的电压波
在能源和人工智能领域具有重要意义。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),通过引入门结构解决了传统RNN中的“长期依赖”问题,从而能够有效捕捉时间序列数据中的长期依赖关系和时序特征,这对于风电功率预测尤为关键。
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
多无人机协同追捕-逃逸问题属于多智能体动态博弈领域,具有军事防御、边境巡逻、灾难救援等应用场景。传统集中式控制依赖全局信息,存在通信延迟、单点故障等问题。分散式策略通过局部感知与自主决策,可提升系统鲁棒性与适应性。
受无人机在商业领域应用的影响,多无人机(MultiUAV)路径规划已引发广泛关注。然而,当前的研究往往未能全面考量这一复杂问题中固有的现实约束条件。本报告研究了在城市环境中执行导航任务的智能体的高效路径规划问题。每个智能体均承担配送任务,需先移动至起始点,再前往后续目标位置,同时要绕过障碍物并避免与其他智能体发生碰撞。
由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关
在动态不确定环境下,无人机集群的分布式估计面临通信噪声、数据丢失、拓扑时变等挑战。本文提出基于信念共识与测量共享的分布式估计框架,通过构建多智能体共享生成模型实现贝叶斯信念更新,结合随机逼近-趋同算法与网络共识机制,解决强噪声、低检测率及杂波环境中的多目标跟踪问题。仿真与实测验证表明,该框架在50%通信丢失率下仍保持92%的估计精度,较传统方法提升37%。







