
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
人工势场法作为一种常用的路径规划方法,具有计算简单、实时性好等优点,在移动机器人路径规划中得到了广泛的应用。- **混合策略**: 将人工势场法与其他路径规划算法(如A*算法、Dijkstra算法等)结合,增强解决局部极小值问题的能力。- **在线学习**: 通过机器学习的方法自适应调整势场参数,提高在复杂环境中的适应能力。1. **计算效率高**: 由于只需要计算力的大小和方向,算法简单快速,适

文献来源:摘要本研究从控制角度探讨了重力补偿的主题。重力可以通过补偿机械系统或控制法则(如比例-微分(PD)加重力、滑模控制或计算力矩法)来平衡。在连续和离散时间域中,重力补偿项在线性和非线性最优控制中均缺失。控制系统的平衡点通常为零,这导致在所需条件未设置在原点或在其他情况下(其中控制系统的平衡点处重力向量不为零)无法进行调节。在这些情况下,系统需要稳态输入信号来补偿重力。本文介绍了基于非线性最

多智能体系统的事件驱动策略是受到未来使用资源有限的嵌入式微处理器的启发,这些微处理器将收集信息并触发个体智能体控制器的更新。本文考虑的控制器更新是事件驱动的,取决于某个测量误差与状态函数范数的比值,并应用于一阶一致性问题。首先考虑了集中式方案,然后是其分布式对应方案,在该方案中,智能体仅需要知道其邻居的状态即可实现控制器。随后,结果被扩展到自触发设置,其中每个智能体在上一次更新时计算其下一次更新时

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

总结GA更适合静态环境下的全局路径探索,PSO在动态环境中表现更优,而混合算法通过优势互补,在复杂任务中综合性能最佳。混合算法的核心挑战在于平衡计算效率与优化精度,需根据任务需求选择分层、嵌入式或并行策略。未来方向多算法融合:结合蚁群算法、深度学习等进一步提升适应性。硬件加速:利用FPGA或GPU实现混合算法的并行计算。动态参数调整:设计自适应惯性权重和变异概率。通过上述分析可见,混合遗传-粒子群

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
全覆盖路径规划是机器人、无人机及自动化设备在环境监测、农业喷洒、建筑3D打印等领域的关键技术。传统螺旋规划虽能实现区域遍历,但存在路径冗余、复杂环境适应性差等问题。本文提出一种融合A*算法的螺旋式全覆盖路径规划方法,通过构建分层栅格地图、设计动态启发函数及优化螺旋扩展策略,实现复杂环境下的高效、无遗漏覆盖。实验表明,该方法在路径长度、覆盖率及死点数量等指标上显著优于传统螺旋算法,为动态环境下的全覆
柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是传统作业车间调度问题的拓展,具有更高的复杂性和灵活性。NSGA-II作为一种有效的多目标优化算法,在解决FJSP方面展现出强大的能力。本文详细探讨了NSGA-II在FJSP中的应用,包括算法原理、染色体编码、交叉变异操作、实验设计与结果分析等,旨在为实际生产调度提供有效的解决方案。
因此,如何综合考虑分布式发电 (distributed generation,DG)和负荷,甚至需求响应负荷的关系,从而制定有效的协同规划方案,来应对高渗透分布式电源接入给主动配电网带来的诸多问题,具有较大的意义和价值。国内外学者对传统配电网规划方案作了大量的研究工作,如 DG 规划[3-4]、网架规划[5-6]、无功补偿规划[7]等。当前配电网协同规划领域研究主要集中在变 电站和线路协同规划[8

RRT(Rapidly-exploring Random Tree)算法背景:为了解决概率路线图(PRM)算法的局限性而提出,适用于高维空间和复杂障碍物环境。核心思想:基于随机采样,以增量的方式构建搜索树,逐步找到从起点到终点的路径。优点:能够处理狭窄通道和障碍物,增量式构建搜索树,适应动态环境。缺点:不保证找到最优路径,只保证概率完备性;路径可能包含许多折角,不够平滑。RRT-Connect算法








