
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor

PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces

题目:AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics文献来源:Nature Communications | (2022) 13:7238 1代码:https://github.com/MannLabs/alphapeptdeep简介:机器学习,特别是深度学习

AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor

在这里,我们回顾了药物发现背景下预测蛋白质-配体相互作用的计算方法,重点是使用人工智能(AI)的方法。我们首先简要介绍蛋白质(靶点),配体(例如药物)及其对非专家的相互作用。最后,我们调查和分析了用于预测蛋白质-配体结合位点,配体结合亲和力和结合姿势(构象)的机器学习(ML)方法,包括经典的ML算法和最近的深度学习方法。在探索了蛋白质-配体相互作用的这三个方面之间的相关性之后,有人提出应该统一研究

题目:AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics文献来源:Nature Communications | (2022) 13:7238 1代码:https://github.com/MannLabs/alphapeptdeep简介:机器学习,特别是深度学习

Organic reaction mechanism classification using machine learning

Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives

Chemistry42: An AI-Driven Platform for Molecular Design and Optimization

On the Frustration to Predict Binding Affinities from Protein−LigandStructures with Deep Neural Networks








