
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
目标检测是在图像中找到特定目标位置的过程。根据图像中目标的数量,我们可以处理单目标或多目标检测问题。本章将重点介绍使用PyTorch实现单目标检测。在单目标检测中,我们试图在给定的图像中只定位一个目标。对象的位置可以通过边界框定义。我们可以用下面的三种格式的一种来表示一个边界框:[x0, y0, w, h][x0, y0, x1, y1][xc, yc, w, h]其中:x0, y0 表示边界框左
小目标检测是计算机视觉中最具挑战性和最重要的问题之一。在这篇文章中,我们将讨论通过迭代数百个小目标检测模型而开发的一些策略。
PyTorch是最受欢迎的深度学习Python库之一,它被人工智能研究社区广泛使用。许多开发者和研究人员使用PyTorch来加速深度学习研究实验和原型设计。1.为什么使用PyTorch如果你正在学习机器学习,进行深度学习研究,或构建人工智能系统,你可能需要使用深度学习框架。深度学习框架可以很容易地完成数据加载、预处理、模型设计、训练和部署等常见任务。PyTorch由于其简单、灵活和Python接口
目标检测是对图像中存在的目标进行定位和分类的过程。识别出的物体在图像中显示为边界框。一般的目标检测有两种方法:基于区域提议的和基于回归/分类的。在本章中,我们将使用一个名为YOLO的基于回归/分类的方法。YOLO-v3是该系列的其中一个版本,在精度方面比以前的(YOLOV1、YOLOV2)版本表现更好。因此,本章将重点介绍使用PyTorch开发的Yolo-v3。在本章中,我们将学习如何实现YOLO
我们如何使用自动编码器函数实现聚类?无监督学习是机器学习的一个分支,它没有标签或输出值。我们只需要理解数据中存在的独特模式。让我们看看图3-1中的自动编码器架构。输入特征空间通过隐藏层转换为低维张量表示,并映射回相同的输入空间。正好在中间的那一层保存着自动编码器的值。AutoEncoder让我们看看下面的例子。torchvision库包含流行的数据集、模型架构和框架。自动编码器是从数据集中识别潜在
机器学习算法特别需要数据,需要成千上万的例子才能做出明智的决定。为我们的算法提供高质量的训练数据是一项昂贵的任务。主动学习是一种优化构建有效机器学习系统所需人力的策略。主动学习定义主动学习是一种机器学习训练策略,它使算法能够主动识别可能最有效地提高性能的训练数据子集。更简单地说,主动学习是一种策略,用于识别我们的训练数据中哪些特定的例子可以最好地提高模型性能。实践中主动学习的一个例子假设您正在构建
# coding: utf-8import cv2# 回调函数def on_EVENT_LBUTTONDOWN(event, x, y, flags, param):# 鼠标左键按下时候的操作if event == cv2.EVENT_LBUTTONDOWN:xy = "%d,%d" % (x, y)print(xy)# 控制台显示当前像素坐标cv2.circle(img, (x, y), 1,
在本教程中,您将学习如何使用 OpenCV 和 Python 自动确定 ArUco 标记类型/字典。到目前为止,在本系列中,我们已经学习了如何检测 ArUco 标记;然而,这取决于我们已经知道使用什么类型的 ArUco 字典来生成标记的事实。这就提出了一个问题:如果您不知道用于生成标记的 ArUco 字典怎么办?如果不知道使用的 ArUco 字典,您将无法在图像/视频中检测到它们。当这种情况发生时
图像分类又叫图像识别,是计算机视觉中的重要任务。在这个人物中,我们假设每张图像只包含一个对象。图像分类分为两种,一种叫二分类,一种叫多分类。我们将覆盖以下内容:探索数据集创建一个数据集划分数据集数据预处理创建数据读取器构建分类模型定义损失函数定义优化器模型训练与评估模型部署在测试集进行模型推理探索数据集数据准备Histopathologic Cancer Detection数据集下载以后,解压到文
在本教程中,使用OpenCV进行基于深度学习的人体姿态估计。我们将详细解释如何在您自己的应用程序中使用预先训练的Caffe模型,该模型赢得了2016年COCO关键点挑战。我们将简要回顾架构以了解其内部情况。1.姿态估计(关键点检测)姿态估计是计算机视觉中的一个普遍问题,用于检测物体的位置和方向。这通常意味着检测描述物体的关键点位置。一个相关的问题是头部姿态估计,我们使用面部关键点特征来获得一个人的







