
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
1. 冲突避免:多无人机同时作业时,极易出现飞行路径交叉、空域争抢等冲突,利用 ABC 算法规划时,需额外增加约束机制,如基于时间窗或空间分离的策略,确保无人机之间保持安全距离,避免碰撞。未来,随着硬件算力提升、算法改进融合,基于 ABC 算法的无人机路径规划有望实现更精准、高效的多场景应用,推动无人机产业迈向新高度。然而,无人机要安全、高效地完成任务,精准且优化的路径规划至关重要,特别是在复杂的

人工势场法作为一种常用的路径规划方法,具有计算简单、实时性好等优点,在移动机器人路径规划中得到了广泛的应用。- **混合策略**: 将人工势场法与其他路径规划算法(如A*算法、Dijkstra算法等)结合,增强解决局部极小值问题的能力。- **在线学习**: 通过机器学习的方法自适应调整势场参数,提高在复杂环境中的适应能力。1. **计算效率高**: 由于只需要计算力的大小和方向,算法简单快速,适

视觉惯性数据融合在室内导航中的核心价值在于互补纠偏与环境适应性。通过紧耦合算法、多传感器冗余及深度学习优化,系统在复杂场景下的定位误差可控制在1%以内(如100米路径误差<1米)。随着MEMS传感器精度的提升(如下一代陀螺仪零偏不稳定性目标<5°/hr),以及边缘AI算力的发展,智能手机将成为室内外无缝导航的关键载体。📚2 运行结果部分代码:i=0;i=i+1;endfrq=30;🎉3参考文献
目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基
二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相
3]程绪长.基于DSP的单相逆变器的研究[J].电子技术与软件工程, 2015(3):3.DOI:JournalArticle/5b3b91e8c095d70f007e671b.是抑制非线性负载谐波(THD优化至4–7%)的黄金区间,需结合DSP算力与拓扑特性动态调整。[2]陈铭.基于DSP控制的单相并联型混合有源电力滤波器的研究[D].南昌大学,2008.DOI:10.7666/d.y15407

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的
本文复现了IEEE顶刊中关于水下机器人(AUV)路径规划与模型预测控制(MPC)路径跟踪控制的研究成果。通过构建包含路径规划与MPC跟踪控制两个核心模块的优化框架,结合AUV水动力学模型,在2D空间内实现了高精度路径跟踪。研究验证了该框架在复杂海洋环境下的鲁棒性与适应性,为AUV自主导航与任务执行提供了理论支撑。
本文聚焦于非平稳重复过程的参数辨识与跟踪问题,提出一种基于具备动态优化能力(DOP)的粒子群算法的解决方案。该算法能够实时跟踪非平稳重复过程的参数变化,当控制器增益被定义为待跟踪参数的已知函数时,可在运行过程中重新整定这些增益。通过设置标志位,可快速切换不同系统配置与粒子群更新规则。本方案受“即插式直接粒子群重复控制器”启发,适用于重复过程参数辨识、迭代学习估计、动态优化问题以及基于种群的进化优化







