
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关
在动态不确定环境下,无人机集群的分布式估计面临通信噪声、数据丢失、拓扑时变等挑战。本文提出基于信念共识与测量共享的分布式估计框架,通过构建多智能体共享生成模型实现贝叶斯信念更新,结合随机逼近-趋同算法与网络共识机制,解决强噪声、低检测率及杂波环境中的多目标跟踪问题。仿真与实测验证表明,该框架在50%通信丢失率下仍保持92%的估计精度,较传统方法提升37%。
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
随着多智能体系统(MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的广泛应用,如何实现高效、安全、协同的点对点轨迹生成成为核心挑战。分布式模型预测控制(DMPC)通过将集中式优化问题分解为局部子问题,结合预测模型与分布式通信机制,为大规模多智能体系统的轨迹规划提供了有效解决方案。本文系统梳理了DMPC在多智能体点对点过渡中的关键技术,包括模型构建、约束处理、协调机制及优化算法,分析了其可扩
本文聚焦于带阻尼的PID控制器在多智能体系统中单个智能体控制的应用研究。通过引入微分项(D项)的阻尼作用,结合比例(P项)和积分(I项)环节,构建适用于多智能体动态环境的PID控制框架。研究结果表明,带阻尼的PID控制器能有效提升单个智能体的轨迹跟踪精度、抗干扰能力和系统稳定性,尤其在存在通信延迟或模型不确定性的场景下表现突出。
无人机物流作为解决"最后一公里"配送难题的关键技术,其路径规划需应对复杂城市环境中的动态障碍物、气象变化、续航限制等挑战。基于Q-learning的强化学习算法通过无模型学习机制,在无需预先构建环境模型的情况下,可自适应动态调整路径策略。本文系统梳理了Q-learning在无人机物流路径规划中的技术实现路径,结合三维栅格建模、多目标奖励函数设计、动态探索策略等关键技术,验证了其在路径最优性、收敛速
DMPC方法通过将每个车辆的控制问题分解为局部优化问题,并利用滚动优化策略进行求解,实现车辆的协同控制。建立车辆动力学模型:考虑异构车辆的动力学差异,采用包含车辆质量、空气阻力系数、滚动阻力系数等参数的非线性车辆动力学模型。设计DMPC控制器:每个车辆作为一个独立的智能体,利用预测状态信息建立自身的优化问题。优化问题的约束包括车辆的动力学约束、控制输入约束和安全距离约束。信息传递机制:每个车辆将自
DMPC方法通过将每个车辆的控制问题分解为局部优化问题,并利用滚动优化策略进行求解,实现车辆的协同控制。建立车辆动力学模型:考虑异构车辆的动力学差异,采用包含车辆质量、空气阻力系数、滚动阻力系数等参数的非线性车辆动力学模型。设计DMPC控制器:每个车辆作为一个独立的智能体,利用预测状态信息建立自身的优化问题。优化问题的约束包括车辆的动力学约束、控制输入约束和安全距离约束。信息传递机制:每个车辆将自
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。