
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
3]程绪长.基于DSP的单相逆变器的研究[J].电子技术与软件工程, 2015(3):3.DOI:JournalArticle/5b3b91e8c095d70f007e671b.是抑制非线性负载谐波(THD优化至4–7%)的黄金区间,需结合DSP算力与拓扑特性动态调整。[2]陈铭.基于DSP控制的单相并联型混合有源电力滤波器的研究[D].南昌大学,2008.DOI:10.7666/d.y15407

二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相
二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相
飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的
1. 冲突避免:多无人机同时作业时,极易出现飞行路径交叉、空域争抢等冲突,利用 ABC 算法规划时,需额外增加约束机制,如基于时间窗或空间分离的策略,确保无人机之间保持安全距离,避免碰撞。未来,随着硬件算力提升、算法改进融合,基于 ABC 算法的无人机路径规划有望实现更精准、高效的多场景应用,推动无人机产业迈向新高度。然而,无人机要安全、高效地完成任务,精准且优化的路径规划至关重要,特别是在复杂的

优势:DDPG通过端到端学习连续控制策略,避免了传统方法对精确模型的依赖,在非线性、高维状态空间中表现优异。其在倾转旋翼无人机中的应用已覆盖姿态控制、路径规划与多模态过渡等场景。挑战训练效率:复杂动力学下的样本需求量大,可结合优先级经验回放(PER)加速收敛。鲁棒性提升:引入TD3(双延迟DDPG)抑制Q值高估,或结合模型预测控制(MPC)增强抗干扰能力。硬件部署:需优化算法实时性,适配嵌入式飞控

本文复现了IEEE顶刊中关于水下机器人(AUV)路径规划与模型预测控制(MPC)路径跟踪控制的研究成果。通过构建包含路径规划与MPC跟踪控制两个核心模块的优化框架,结合AUV水动力学模型,在2D空间内实现了高精度路径跟踪。研究验证了该框架在复杂海洋环境下的鲁棒性与适应性,为AUV自主导航与任务执行提供了理论支撑。
本文聚焦于非平稳重复过程的参数辨识与跟踪问题,提出一种基于具备动态优化能力(DOP)的粒子群算法的解决方案。该算法能够实时跟踪非平稳重复过程的参数变化,当控制器增益被定义为待跟踪参数的已知函数时,可在运行过程中重新整定这些增益。通过设置标志位,可快速切换不同系统配置与粒子群更新规则。本方案受“即插式直接粒子群重复控制器”启发,适用于重复过程参数辨识、迭代学习估计、动态优化问题以及基于种群的进化优化
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
全覆盖路径规划是机器人、无人机及自动化设备在环境监测、农业喷洒、建筑3D打印等领域的关键技术。传统螺旋规划虽能实现区域遍历,但存在路径冗余、复杂环境适应性差等问题。本文提出一种融合A*算法的螺旋式全覆盖路径规划方法,通过构建分层栅格地图、设计动态启发函数及优化螺旋扩展策略,实现复杂环境下的高效、无遗漏覆盖。实验表明,该方法在路径长度、覆盖率及死点数量等指标上显著优于传统螺旋算法,为动态环境下的全覆







