logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

【C# 技术】 C# 常用排序方式——自定义数据排序

在最近的项目中经常会对C#中的数据进行排序,对于基本数据类型,其排序方式比较简单,只需要调用内置算法即可实现,但对于自定义数据类型以及自定义排序规则的情况实现起来就比较麻烦,所以在本文章中将详细介绍一下在中C#中如何对数据进行排序。

文章图片
#c##windows#开发语言
【TensorRT】NVIDIA TensorRT 安装 (Windows C++)

NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK,可为深度学习推理应用提供低延迟和高吞吐量。基于 NVIDIA TensorRT 的应用程序在推理过程中的执行速度比仅使用 CPU 的平台快 36 倍,使开发人员能够优化在所有主要框架上训练的神经网络模型,以高精度校准以降低精度,并部署到超大规模数据中心、嵌入式平台或汽车产品平台。

文章图片
#windows#深度学习#人工智能
【YOLOv10】使用 TensorRT C++ API 调用GPU加速部署 YOLOv10 实现 500FPS 推理速度——快到飞起!

NVIDIA ® TensorRT ™ 是一款用于高性能深度学习推理的 SDK,包含深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法,通过消除NMS、优化模型架构和引入创新模块等策略,在保持高精度的同时显著降低了计算开销,为实时目标检测领域带来了新的突破。>在本文中,我们将演示如何使用NVIDIA TensorRT C

文章图片
【哪吒开发板试用】使用 OpenVINO™ C# 异步推理接口部署YOLOv8 ——在哪吒开发板上也可以实现视频推理

2024 Intel®“走近开发者”互动活动-哪吒开发套件免费试用AI创新计划:哪吒开发板是专为支持入门级边缘AI应用程序和设备而设计,能够满足人工智能学习、开发、实训等应用场景。为了测试该开发板的推理性能,同时测试所推出的OpenVINO™ C# API项目能否应用到该开发板上,我们使用该开发板,结合OpenVINO™ C#

#openvino#哪吒开发套件
【OpenCV】 OpenCV (C++) 与 OpenCvSharp (C#) 之间数据通信

但是在实际使用中,由于涉及到不同编程语言之间互相调用,导致C++ 中的OpenCV与C#中的OpenCvSharp 图像数据在不同编程语言之间难以有效传递。在本文中我们将结合OpenCvSharp源码实现原理,探究两种数据之间的通信方式。

文章图片
#opencv#c++#c#
【OpenCV】在Linux上使用OpenCvSharp

OpenCvSharp是一个OpenCV的 .Net wrapper,应用最新的OpenCV库开发,使用习惯比EmguCV更接近原始的OpenCV,该库采用LGPL发行,对商业应用友好。

文章图片
#opencv#linux#人工智能
【TensorRT】基于C#调用TensorRT 部署Yolov5模型 - 上篇:构建TensorRTSharp

目前TensorRT无法直接在C#调用函数接口实现模型部署,此处利用动态链接库功能,构建TensorRTSharp,实现C#部署模型。

文章图片
#c##c++#开发语言
如何为开源项目和社区做贡献 -- 你应该知道的十件事

在深入参与开源项目的过程中,我也广泛参考了网上的一些成功项目经验,得到了无数宝贵的经验和技能提升,这使得我的技术层次上升到了全新的高度。经过两年的探索与实践,技术能力得到了显著的提高,而更重要的是,我的努力得到了越来越多人的认可和支持,从而扩大了我在技术社区的影响力。时值我开展开源项目的两周年,有机会整理与分享我从一个技术新手逐步成长到拥有自己开源项目的经验与感想。我希望我的分享能为刚刚踏入开源领

文章图片
#开源
【OpenCV】在MacOS上源码编译OpenCV

在做视觉任务时,我们经常会用到开源视觉库OpenCV,OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,它具有C++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS。最近在项目中,我遇到了在MacOS上使用OpenCV需求,目前OpenCV官网上并没有提供OpenCV现成的安装包,因此在此处我们需要

文章图片
#opencv#macos#人工智能
【TensorRT】TensorRT 部署Yolov5模型(C++)

TensorRT支持多种模型文件,不过随着onnx模型的发展,目前多种模型框架都将onnx模型当作中间转换格式,是的该模型结构变得越来越通用,因此TensorRT目前主要在更新的就是针对该模型的转换。TensorRT是可以直接读取engine文件,对于onnx模型需要进行一些列转换配置,转为engine引擎才可以进行后续的推理,因此在进行模型推理前,需要先进行模型的转换。

文章图片
#c++#java#算法
    共 14 条
  • 1
  • 2
  • 请选择