登录社区云,与社区用户共同成长
邀请您加入社区
AI RAG系统评测实践:Coze及相关产品评测对比 RAG(检索增强生成)是一种 AI 框架,它将传统信息检索系统(例如数据库)的优势与生成式大语言模型 (LLM) 的功能结合在一起,通过将这些额外的知识与自己的语言技能相结合,AI 可以撰写更准确、更具时效性且更贴合您的具体需求的文字。 RAG 通过几个主要步骤来帮助增强生成式 AI 输出: 检索和预处理:RAG 利用强大的搜索算法查询外部数据
FastGPT一站式解决方案[1-部署篇]:轻松实现RAG-智能问答系统(含sealos云端部署、docker部署、OneAPI&Xinference模型接入) FastGPT是一个功能强大的平台,专注于知识库训练和自动化工作流程的编排。它提供了一个简单易用的可视化界面,支持自动数据预处理和基于Flow模块的工作流编排。FastGPT支持创建RAG系统,提供自动化工作流程等功能,使得构建和
从数据洞察到智能决策:合合信息&infiniflow RAG技术的实战案例分享 标题取自 LLamaIndex,这个内容最早提出于今年 2 月份 LlamaIndex 官方博客。从 22 年 chatGpt 爆火,23 年大模型尝鲜,到 24 年真正用 AI 落地业务场景,业界普遍都发现了从 MVP 到 PMF 不是那么容易的,具体的原因有非常多,在 RAG 场景下,最主要的表现是企业的数
专业级语义搜索优化:利用 Cohere AI、BGE Re-Ranker 及 Jina Reranker 实现精准结果重排 1. 简介 1.1 RAG 在说重排工具之前,我们要先了解一下 RAG。 检索增强生成(RAG)是一种新兴的 AI 技术栈,通过为大型语言模型(LLM)提供额外的 “最新知识” 来增强其能力。 基本的 RAG 应用包括四个关键技术组成部分: Embedding 模型:用于将外
回顾这两天的参会经历,我深感收获颇丰,个人觉得AICon 全球人工智能与机器学习技术大会不仅是一个技术交流的平台,更是一个激发创新思维、促进合作的机会,我不仅接触到了最前沿的技术动态,了解到了行业的发展趋势,同时也结识了许多志同道合的朋友。在这些环节中,我有机会与其他参会者深入交流,分享彼此的经验和见解。当我踏入大会现场的那一刻,便被现场的氛围所感染,会场内人头攒动,来自各个领域的技术开发者怀揣着
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发 1. Ollama 部署的本地模型() Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。,这是 Ollama 的官网地址:https://ollama.com/ 以下是其主要特点和功能概述: 简化部署:Ollama 目标在于简化在 Doc
无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案 1.Dify 简介 1.1 功能情况 Dify,一款引领未来的开源大语言模型(LLM)应用开发平台,革新性地融合了后端即服务(Backend as a Service,BaaS)与LLMOps的精髓,为开发者铺设了一条从创意原型到高效生产的快车道。其设计旨在打破技术壁垒,让非技术背景的用户
告别Hugging Face模型下载难题:掌握高效下载策略,畅享无缝开发体验 Huggingface国内开源镜像:https://hf-mirror.com/ 里面总结了很多下载的方法,下面进行一一讲解 方法一:网页下载 在模型主页的Files and Version中中可以获取文件的下载链接。无需登录直接点击下载,还可以复制下载链接,用其他下载工具下载。 方法二:huggingface-cli(
无缝融入,即刻智能[1]:MaxKB知识库问答系统,零编码嵌入第三方业务系统,定制专属智能方案,用户满意度飙升 1.简介 MaxKB(Max Knowledge Base)是一款基于 LLM 大语言模型的开源知识库问答系统, 飞致云是中国领先的开源软件公司。飞致云旗下开源产品包括 1Panel 开源面板、JumpServer 开源堡垒机、DataEase 开源数据可视化分析工具、MeterSphe
智胜未来:国内大模型+Agent应用案例精选,以及主流Agent框架开源项目推荐 Agent是以大模型为核心的智能体,通过与用户对话的形式,来完成各种任务,它很像一个“人”。如果和人做类比,它应该具备以下能力: Agent的各个要素各个子模块: 1.对话式Agent 1.1 月之暗面(Moonshot AI)-Kimi 官方:https://kimi.moonshot.cn/ Kimi 作为月之暗