简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
对本博客比较熟悉的朋友知道,我司论文项目组正在基于大模型做论文的审稿(含CS英文论文审稿、和金融中文论文审稿)、翻译,且除了审稿翻译之外,我们还将继续做润色/修订、idea提炼(包含论文检索),是一个大的系统,包含完整的链路由于论文项目组已壮大到18人,故目前在并行多个事,且我也针对idea提炼做一下技术探索
今年十一7天假期期间,一半的时间都在改本博客内的上一篇文章《从Fast-UMI到Diff-Control:分别改进UMI的硬件及其所用的Diffusion policy(含ControlNet详解)》,改完之后,接下来计划要写的博客包括且不限于。然10.7日晚,又无意中看到了「UMI on Legs和Helpful DoggyBot」这两个工作,前者把UMI机械臂放到机器狗背上(适合我司之前去一个
随着『GPT4多模态/Microsoft 365 Copilot/Github Copilot X/ChatGPT插件』的推出,绝大部分公司的技术 产品 服务,以及绝大部分人的工作都将被革新一遍类似iPhone的诞生 大家面向iOS编程 有了App Store现在有了ChatGPT插件/GPT应用商店,以后很多公司 很多人面向GPT编程(很快技术人员分两种,一种懂GPT,一种不懂GPT)然Chat
我们在这篇文章《》中的2.5节有提到,“2021 年7月,OpenAI发布Codex的论文《》,其中初始的Codex是根据120亿参数的GPT-3变体进行微调的,且通过对159GB的Python代码进行代码训练,后来这个120 亿参数的模型演变成OpenAI API中的code-cushman-001,具备较强的代码/推理能力”接下来,我们来看下Codex背后的原理到底是怎样的,即其是如何一步一步
成就本文有以下三个因素校长最近开始搞deepseek了吗?刚看了论文,没搞懂MLA那块的cache是怎么算的,我总觉得他的效果应该类似MQA才对,但是反馈是挺好的目前团队项目上的事情太多,然后近期在写那个KAN确实还没来得及看这个deepseek,我近期看下而搞之前——近几天,会先写一下它的论文解读,故本文就来了且一如既往做到,对于几乎每一个主题,都做到本博客万千读者或七月学员所说的:“还是看校长
本文最开始属于此文《视频生成Sora的全面解析:从AI绘画、ViT到ViViT、TECO、DiT、VDT、NaViT等》但考虑到DiT除了广泛应用于视频生成领域中,在机器人动作预测也被运用的越来越多,加之DiT确实是一个比较大的创新,影响力大,故独立成本文在ViT之前,图像领域基本是CNN的天下,包括扩散过程中的噪声估计器所用的U-net也是卷积架构,但随着ViT的横空出世,人们自然而然开始考虑这
本文最开始属于此文《视频生成Sora的全面解析:从AI绘画、ViT到ViViT、TECO、DiT、VDT、NaViT等》但考虑到DiT除了广泛应用于视频生成领域中,在机器人动作预测也被运用的越来越多,加之DiT确实是一个比较大的创新,影响力大,故独立成本文在ViT之前,图像领域基本是CNN的天下,包括扩散过程中的噪声估计器所用的U-net也是卷积架构,但随着ViT的横空出世,人们自然而然开始考虑这
程序员面试、算法研究、编程艺术、红黑树、机器学习5大经典原创系列集锦与总结作者:July--结构之法算法之道blog之博主。时间:2010年10月-2018年5月,一直在不断更新中..出处:http://blog.csdn.net/v_JULY_v。说明:本博客中部分文章经过不断修改、优化,已集结出版成书《编程之法:面试和算法心得》。前言开博4年有余,...
真没想到,举例视频生成上一轮的集中爆发才过去三个月,没想OpenAI一出手,该领域又直接变天了自打2.16日OpenAI发布sora以来,不但把同时段Google发布的Gemmi Pro 1.5干没了声音,而且网上各个渠道,大量新闻媒体、自媒体(含公号、微博、博客、视频)做了大量的解读,也引发了圈内外的大量关注,很多人因此认为,视频生成领域自此进入了大规模应用前夕,好比NLP领域中GPT3的发布一
还开始研究一系列开源模型(包括各自对应的模型架构、训练方法、训练数据、本地私有化部署、硬件配置要求、微调等细节)该项目部分一开始是作为此文《》的第4部分,但但随着研究深入 为避免该文篇幅又过长,将把『第4部分 开源项目』抽取出来 独立成本文。