
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文针对异常扩散过程(如亚扩散、超扩散)的非局部、长记忆特性,提出基于分数阶差分多智能体2D协作算法(FO-Diff-MAS2D)的分布式反馈控制框架。通过融合“Caputo时间差分+Riesz空间差分”离散格式与质心沃罗诺伊剖分(CVT)优化策略,实现二维分数扩散方程的高精度数值求解与执行器动态位置优化。仿真结果显示,该方法在工业散热、污染物扩散控制等场景中,较传统整数阶控制能耗降低37.2%,
国家学生体质健康标准》的颁布,有效地促进了大中小学生关注自身体质健康的发展,激励学生积极进行身体锻炼。通过在体育场地周边安装摄像头,可以对学生的体育动作进行实时捕捉,以便对学生的运动姿态进行分析。例如,在立定跳远教学中,通过记录并分析学生起跳瞬间的腿部发力动作、手臂摆动轨迹、身体腾空姿态以及落地姿势等一系列身体变化的细节数据,可以帮助教师全面了解每个学生动作的优点和不足,从而给出针对性的改进方案。
在“双碳”目标驱动下,智慧校园作为能源转型的典型场景,亟需构建高效、低碳的能源管理体系。本文聚焦光储一体化系统(光伏+储能)与校园配电网的协同调度,提出基于多目标优化的能源调度策略,通过平衡经济性、环保性、可靠性三大核心目标,实现清洁能源消纳率提升、用电成本降低及能源供应稳定性增强。研究结合分布式光伏间歇性特征、储能系统双向调节能力及校园负荷特性,构建“源-网-荷-储”协同调度模型,并采用改进粒子
如果单自由度(SDOF)系统的自由衰减响应(FDR)不能直接获得,则可以使用环境振动数据来估计模态阻尼比。这里使用了随机递减技术(RDT)[1]以及自然激发技术(NExT)[2]。首先,使用[3]在时域中模拟SDOF对白噪声的响应。然后使用 RDT 或 NExT 计算 IRF。最后,将指数衰减拟合到IRF的包络上,得到模态阻尼比。
MAV位置:r=(x,y,z)速度分量:v=(x˙,y˙,z˙)
两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。
两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。
在DQN + 人工势场的避障控制中,首先根据环境信息构建人工势场,将障碍物视为斥力源,目标点视为引力源。然后,将势场信息作为DQN的输入状态之一,与原始的环境状态(如位置、速度等)一起输入到DQN网络中。DQN网络根据输入状态输出每个动作的价值,智能体根据这些价值选择最优动作进行执行。
非支配排序遗传算法(NSGA)是一种多目标优化算法,旨在解决具有多个目标函数的优化问题。NSGA是在遗传算法的基础上发展而来的,它通过一种称为"非支配排序"的策略,将解空间中的个体分为不同的等级,并通过交叉和变异等遗传操作来搜索适应于多个目标的优质解。NSGA首先对种群中的个体进行非支配排序,即根据个体之间的优劣关系将其划分为多个不同的前沿等级。一个个体如果在某个目标函数上优于另一个个体且不劣于另
本研究聚焦于遭受拒绝服务(DoS)攻击的网络物理多智能体系统(CPS)的弹性模型预测控制问题。随着多智能体系统在众多领域的广泛应用,其面临的网络安全威胁,尤其是DoS攻击,对系统的正常运行和稳定性构成了严重挑战。本文旨在构建有效的弹性模型预测控制策略,以提高系统在DoS攻击下的性能和恢复能力,确保系统能持续稳定地运行。