
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
持久化存储是Spark非常重要的一个特性,通过持久化存储,提升Spark应用性能,以更好地满足实际需求。而Spark的持久化存储,根据不同的需求现状,可以选择不同的策略方案。今天的大数据入门分享,我们就来具体讲讲Spark持久化存储策略。所谓的Spark持久化存储,就是将一个RDD持久化到内存或磁盘中,以便重用该RDD,省去重新计算的环节,以空间换时间。RDD持久化,是一个分布式的过程,其内部的每
HDFS作为Hadoop的分布式文件系统,其在大数据平台当中的地位是显而易见的。面对越来越大规模的数据存储任务,HDFS的高可靠性和高性能依然值得称赞,这也与HDFS的数据读写机制有关。今天的大数据开发分享,我们具体来讲讲HDFS数据写入流程。HDFS数据写入客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后客户端按顺序将文件逐个
Flink在大数据处理上,是流批一体的框架,针对于各种场景下的数据处理,也有一套Flink SQL的操作思路。今天的大数据开发学习分享,我们就来讲讲基本的Flink SQL快速入门。Flink SQL,就是直接可以在代码中写SQL,来实现一些查询(Query)操作。Flink的SQL支持,基于实现了SQL标准的Apache Calcite(Apache开源SQL解析工具)。1、导入所需要的的依赖包

互联网的发展,带来了各种数据的爆发式增长,所以接入互联网的相关操作行为,都化为虚拟的数据被记录了下来。大数据时代的带来,一个明显的变化就是全样本数据分析,面对TB/PB级及以上的数据规模,Hadoop始终占据优势。今天的大数据学习分享,我们来聊聊基于Hadoop的数据分析平台。Hadoop在大数据技术生态圈的地位,可以说是难以动摇,经过这么多年的发展,基础核心架构的地位,依然稳固。Hadoop系统

大数据已经成为我们生活当中习以为常的一个名词,基于大数据分析下的精准推荐,已然覆盖到我们生活的方方面面。在这样的背景下,大数据的未来发展前景,也受到更多的关注。精准营销、广告推荐、猜你喜欢……这些已经融入我们生活当中的行为,背后都有大数据技术的支持,还有席卷全球的疫情,疫情数据的跟踪与分析,防控的相关措施制定,也都少不了大数据的功劳。对于大数据的未来发展前景,我们首先来看一组大数据近几年的发展数据
在大数据处理当中,最核心要解决的其实就是两个问题,大数据存储和大数据计算。在Hadoop生态当中,解决大数据存储,主要依靠就是HDFS,再配合数据库去完成。今天的大数据入门分享,我们就来讲讲Hadoop HDFS存储原理。1、什么是HDFS?HDFS即Hadoop distributed file system(hadoop分布式文件系统),在Hadoop当中负责分布式存储阶段的任务,它是一个分布
Kafka作为实时消息队列的一个重要框架,在大数据技术架构搭建层面,越来越得到重用。相应的,Kafka在大数据技术生态当中的地位,也越来越重要。今天的大数据开发学习分享,我们就来讲讲Kafka延迟队列的部分。kafka基于时间轮(TimingWheel)自定义了一个用于实现延迟功能的定时器。时间轮是一个存储定时任务的环形队列,底层采用数组实现,数组中的每个元素可以存放一个定时任务列表(TimerT
犹记得,Spark在2013年才开始陆续传到国内,而再此之前,大数据领域可以说是Hadoop的天下。但是仅在一年多左右的时间,Spark就迅速成为了新一代的大数据框架的选择,光环甚至一度超过Hadoop,而关于Hadoop和Spark的争议,也一直没断过。比如说Spark是否依赖hadoop?关于Spark和Hadoop的关系,一开始似乎是处在天然的对立面,非此即彼,什么Hadoop已死,Spar

在Spark生态当中,MLlib往往是被定义为一个机器学习的库,通过用MLlib封装好的算法,可以非常轻松便捷地构建机器学习应用。在大数据处理当中,有了MLlib的出现,可以说是非常有利的一个工具。今天的大数据学习分享,我们就来对Spark MLlib做一个简单的入门介绍。Spark MLLib简介MLlib作为Spark的机器学习库,提供了非常丰富的机器学习算法,比如分类、回归、聚类及推荐算法等
大数据发展至今,提起大数据计算引擎,Spark一定是不能忽视的一个。经过近年来的发展,Spark在大数据领域的市场占有率也在不断提升,可以自己独立支撑集群运行,也可以与Hadoop生态集成运行,因此广受欢迎。今天我们就来分享Spark详解,看看Spark在大数据生态当中的定位如何?早期的大数据,Hadoop框架受到的重用是显而易见的,而随着大数据处理新的数据处理需求产生,Hadoop在实时数据流计