
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
视觉惯性数据融合在室内导航中的核心价值在于互补纠偏与环境适应性。通过紧耦合算法、多传感器冗余及深度学习优化,系统在复杂场景下的定位误差可控制在1%以内(如100米路径误差<1米)。随着MEMS传感器精度的提升(如下一代陀螺仪零偏不稳定性目标<5°/hr),以及边缘AI算力的发展,智能手机将成为室内外无缝导航的关键载体。📚2 运行结果部分代码:i=0;i=i+1;endfrq=30;🎉3参考文献
在自定义障碍物场景下,JPS算法能够根据障碍物的形状和位置,合理规划全局路径,DWA算法则能够在局部范围内实现精确避障。实验结果表明,混合控制算法能够有效处理自定义障碍物,规划出合理的路径,确保机器人安全导航。
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
Copula是一种将多变量联合分布函数 F(x1,…
最小误差法是一种基于图像中背景和目标像素的概率分布密度来实现的图像分割方法。其核心思想是找到一个阈值,根据该阈值将图像划分为目标和背景两部分,并计算目标点误分为背景的概率和背景点误分为目标点的概率,得出总的误差划分概率。当总的误差划分概率最小时,所得到的阈值即为最佳阈值。

将深度确定性策略梯度(DDPG)强化学习模型控制温度的性能与比例-积分-微分(PID)控制器和恒温器控制器的性能进行比较研究文档深度确定性策略梯度(DDPG)算法是一种无模型、在线、离策略的强化学习方法。DDPG智能体是一种行动者-评论家(actor-critic)强化学习智能体,它计算出一个最优策略,以最大化长期奖励。

路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综
神经网络模糊逻辑自整定PID控制器是一种结合了神经网络、模糊逻辑和PID控制器的先进控制方法。在自主水下车辆(AUV)研究中,这种控制器可以用于提高AUV的导航、定位和姿态控制性能。这种控制器的工作原理如下:1. **神经网络(NN)**:神经网络用于学习和预测AUV系统的非线性特性。通过训练神经网络,可以建立系统输入(如传感器数据)和输出(如舵角或推进器速度)之间的映射关系,以便更好地控制AUV








