
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
由于非光滑控制和触发条件引起的混合非线性,事件驱动控制下的有限时间共识分析比连续时间控制更具挑战性。我们研究了具有单积分器动态和标量状态的智能体,并提出了一种用于有限时间共识的分布式事件驱动控制协议,并与连续时间控制进行了比较。结果表明,使用所提出的事件驱动控制方案,智能体可以在有限时间内达成共识,并且不会出现Zeno行为。我们还得到了一个关于收敛时间的估计,并证明它不仅与初始条件和网络连通性有关
在动态不确定环境下,无人机集群的分布式估计面临通信噪声、数据丢失、拓扑时变等挑战。本文提出基于信念共识与测量共享的分布式估计框架,通过构建多智能体共享生成模型实现贝叶斯信念更新,结合随机逼近-趋同算法与网络共识机制,解决强噪声、低检测率及杂波环境中的多目标跟踪问题。仿真与实测验证表明,该框架在50%通信丢失率下仍保持92%的估计精度,较传统方法提升37%。
它包含四个以绿色显示的作业操作操作,每个作业操作操作都有一个紫色的兼容计算机操作空间。灵活作业车间调度问题(FJSP)在现代制造业中起着至关重要的作用,广泛用于各种制造工艺,例如半导体制造,汽车和纺织品制造(Brucker和Schlie,1990,Garey等人,1976,Jain和Meeran,1999,Kacem等人,2002)。精确的方法,如数学规划,在整个解空间中寻找最优解,但由于它们的N

上述三种算法均针对低光照图像增强问题提出了有效的解决方案。其中,生物启发式多曝光融合框架通过模拟人类视觉系统的调整过程,实现了对低光照图像的精确增强;基于曝光融合框架的新型图像对比度增强算法则通过合成多曝光图像并找到最佳曝光率来增强图像对比度;而基于相机响应模型的新型低光照图像增强算法则通过分析相机响应函数的变化来增强低光照图像的质量。这些算法各具特色,可根据具体应用场景和需求进行选择。📚2 运

RRT即快速搜索随机树,是一种在机器人运动规划、路径规划等领域广泛应用的算法。它具有以下显著特点: - 随机性:随机采样的方式使得算法能够在复杂的环境中快速探索不同的区域,增加找到可行路径的可能性。高效性:能够在高维空间中进行有效的路径搜索,对于复杂的环境和大规模的问题具有较好的适应性。路径调整:当发现障碍物时,算法会调整随机树的生长方向,尝试从不同的方向绕过障碍物,确保生成的路径不会与障碍物发生

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。

将深度确定性策略梯度(DDPG)强化学习模型控制温度的性能与比例-积分-微分(PID)控制器和恒温器控制器的性能进行比较研究文档深度确定性策略梯度(DDPG)算法是一种无模型、在线、离策略的强化学习方法。DDPG智能体是一种行动者-评论家(actor-critic)强化学习智能体,它计算出一个最优策略,以最大化长期奖励。

文献来源:根据微电网或微能源网是否与主电网相连接,可将其分为并网型和独立型 2 种。本文以并网型微 能源网为研究对象,研究其并网运行的能量管理与优化问题。目前,针对微能源网的能量管理,从算法上来讲,多结合最优化算法或者启发式算法进行。文献[3]建立了微网混合整数非线性模型,通过将其分解为组合问题和最优潮流问题,避免直接求解混合整数非线性问题,加快了寻优速度。文献[4]通过概率约束对旋转备用储能的不

随着全球能源结构转型和智能电网技术发展,能源市场呈现高度动态化与不确定性特征。传统基于规则的交易策略难以适应复杂市场环境,而Q-learning算法凭借其无模型学习、动态适应性和鲁棒性优势,成为优化能源交易决策的重要工具。本文系统阐述Q-learning算法原理,构建面向能源市场的马尔可夫决策过程(MDP)模型,通过仿真实验验证其在电力交易、微电网运营等场景中的效益优化能力,并提出深度强化学习、多
随着多智能体系统(MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的广泛应用,如何实现高效、安全、协同的点对点轨迹生成成为核心挑战。分布式模型预测控制(DMPC)通过将集中式优化问题分解为局部子问题,结合预测模型与分布式通信机制,为大规模多智能体系统的轨迹规划提供了有效解决方案。本文系统梳理了DMPC在多智能体点对点过渡中的关键技术,包括模型构建、约束处理、协调机制及优化算法,分析了其可扩