logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定研究(Matlab代码实现)

本文提出一种“模型预测控制(MPC)+ 滚动时域估计(MHE)”一体化框架,旨在解决在传感器和执行器双重噪声环境下,将移动机器人稳定到指定目标点 xs​ 的问题。与现有研究仅单独考虑状态或控制噪声、且将估计与控制分步求解的做法不同,本文创新性地把传感器噪声和执行器噪声同时纳入联合优化,实现了真正意义上的“估计–控制闭环”。采用多重打靶法将 MPC 问题转化为非线性规划(NLP),并利用 CASAD

#matlab#人工智能#开发语言 +1
基于非对称纳什谈判的多微网电能共享运行优化策略(Matlab代码实现)

结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效

#matlab#开发语言#支持向量机
无模型自适应预测控制 (MFAPC) 与迭代学习控制 (MFAILC) 的数值验证仿真程序

本文聚焦无模型自适应预测控制(MFAPC)与无模型自适应迭代学习控制(MFAILC)的数值验证仿真研究。通过构建基于紧致形式动态线性化(CFDL)的仿真程序,分别验证了MFAPC在非线性系统预测跟踪中的有效性,以及MFAILC在非线性系统迭代轨迹跟踪中的性能。仿真结果表明,两种方法均能有效处理非线性系统控制问题,为复杂工业过程的控制提供了新的思路。

#学习#算法#人工智能 +1
【无人机路径规划】通过人工蜂群 (ABC) 实现单无人机和多无人机在二暗和三暗环境下的路径规划(Matlab代码实现)

1. 冲突避免:多无人机同时作业时,极易出现飞行路径交叉、空域争抢等冲突,利用 ABC 算法规划时,需额外增加约束机制,如基于时间窗或空间分离的策略,确保无人机之间保持安全距离,避免碰撞。未来,随着硬件算力提升、算法改进融合,基于 ABC 算法的无人机路径规划有望实现更精准、高效的多场景应用,推动无人机产业迈向新高度。然而,无人机要安全、高效地完成任务,精准且优化的路径规划至关重要,特别是在复杂的

文章图片
#无人机#matlab#开发语言
(DDPG)深度学习神经网络算法DDPG优化解决二维栅格地图路径规划研究(Matlab代码实现)

二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相

#深度学习#神经网络#算法 +1
(DDPG)深度学习神经网络算法DDPG优化解决二维栅格地图路径规划研究(Matlab代码实现)

二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相

#深度学习#神经网络#算法 +1
【事件触发一致性】多智能体系统的分布式事件触发控制(Matlab代码实现)

多智能体系统的事件驱动策略是受到未来使用资源有限的嵌入式微处理器的启发,这些微处理器将收集信息并触发个体智能体控制器的更新。本文考虑的控制器更新是事件驱动的,取决于某个测量误差与状态函数范数的比值,并应用于一阶一致性问题。首先考虑了集中式方案,然后是其分布式对应方案,在该方案中,智能体仅需要知道其邻居的状态即可实现控制器。随后,结果被扩展到自触发设置,其中每个智能体在上一次更新时计算其下一次更新时

文章图片
#matlab
基于飞机配电优化负荷管理系统研究(Matlab代码实现)

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

#matlab#开发语言#支持向量机
基于飞机配电优化负荷管理系统研究(Matlab代码实现)

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

文章图片
#matlab#开发语言
基于飞机配电优化负荷管理系统研究(Matlab代码实现)

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

文章图片
#matlab#开发语言
    共 264 条
  • 1
  • 2
  • 3
  • 27
  • 请选择