
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
静态一致性只关注智能体最终达到的稳定状态的一致性。定义为:对于任意初始状态,存在控制协。
静态一致性只关注智能体最终达到的稳定状态的一致性。定义为:对于任意初始状态,存在控制协。
本文提出一种基于分布式模型预测控制的多智能体离线轨迹生成新算法。该算法可扩展且高效的核心在于“按需避碰”策略:各智能体通过预测自身未来状态并与邻居共享,可在飞向目标的过程中及时探测并规避碰撞。算法完全分布式实现,与既往基于序贯凸规划的优化方法相比,计算时间缩短 85% 以上,仅对轨迹最优性产生微小影响。该方法已通过大量仿真验证,并在室内狭窄空间完成了多达 25 架四旋翼的实验飞行测试。
本文提出一种基于分布式模型预测控制的多智能体离线轨迹生成新算法。该算法可扩展且高效的核心在于“按需避碰”策略:各智能体通过预测自身未来状态并与邻居共享,可在飞向目标的过程中及时探测并规避碰撞。算法完全分布式实现,与既往基于序贯凸规划的优化方法相比,计算时间缩短 85% 以上,仅对轨迹最优性产生微小影响。该方法已通过大量仿真验证,并在室内狭窄空间完成了多达 25 架四旋翼的实验飞行测试。
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
随着人工智能和自动化技术的飞速发展,多智能体系统(Multi-Agent Systems, MAS)在无人机编队、自动驾驶车队、机器人协同操作等领域的应用日益广泛。点对点(point-to-point)轨迹生成作为多智能体协调的基础,其目标是在满足各种约束条件(如动力学约束、避障约束、通信约束等)的前提下,为每个智能体规划一条从起始点到目标点的平滑、可行的路径。传统的集中式轨迹生成方法在处理大规模
Copula是一种将多变量联合分布函数 F(x1,…
通过范围/多普勒快速傅里叶变换(FFT)方法从模拟的调频连续波(FMCW)波形雷达信号中生成目标并检测其范围和速度,并使用二维恒虚警率(CFAR)可视化显示目标研究。

在轨迹规划和执行器分析中,机械手和移动机器人模型可以用于模拟和分析机器人的运动和控制。以下是一些常用的机械手和移动机器人模型:机械手模型:串联机械手模型:这种模型由多个关节连接而成,每个关节可以旋转或平移。常见的串联机械手模型包括RRR(Revolute-Revolute-Revolute)和RRP(Revolute-Revolute-Prismatic)等。并联机械手模型:这种模型由多个平行连接
路径规划作为机器人导航、智能交通及游戏AI等领域的核心技术问题,其算法性能直接影响系统的效率与可靠性。本文以六边形网格结构为研究对象,系统对比了A算法、遗传算法、蚁群优化算法及元胞自动机算法在四组不同规模和复杂度场景下的路径规划性能。通过设计10×10、20×20、30×30及50×50网格的测试场景,从路径长度、计算时间、节点探索数量、成功率及路径质量等维度进行定量分析。实验结果表明,A算法在综







