logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

EM算法(expectation maximization algorithms)揭秘

比起k-means算法,EM一般需要迭代更多次数来到达收敛,每一轮的计算量也更大。因此有必要用k-means辅助初始化,帮助找到比较好的初始值。需要强调,EM并不保证找到全局最优解,初始值对此有影响。存在多种启发式或元启发式方法来避开局部最大值,例如随机重新启动爬山(从几个不同的随机初始估计开始),或应用模拟退火方法。

文章图片
#算法#机器学习#人工智能 +2
PCA算法(Principal Component Analysis)揭秘

经典PCA将数据投影到更低维的线性子空间,事实上,PCA也可以用概率隐变量模型的极大似然估计方法来解释。这种PCA提法,也叫做概率化PCA(Probabilistic PCA,或简称PPCA)。它比传统PCA有如下优势:

文章图片
#人工智能#机器学习#算法 +1
蒙特卡洛树搜索(Monte Carlo Tree Search)揭秘

MCTS能够非常聪明的去探索胜率较高的路径,和dfs这类暴力穷举算法比起来,可以花费较少的运算资源,就能达到不错的效果,尤其对于围棋这类每步棋都有200种左右选择的游戏,使用MCTS的效果非常显著。但与此同时也要指出,MCTS并不能保证一定找到最佳路径和着法。AlphaGo和李世石比赛就输了一盘,说明不一定能百分百找到最优解。不过论整体胜率,AlphaGo和AlphaGoZero已远远超过了人类。

文章图片
#启发式算法#数据结构#神经网络 +2
到底了