
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
LDA 模式是生成式模型,在这里,假设需要建模的数据为 X,标签信息为 Y。判别式模型:对 Y的产生过程进行描述,对特征信息本身不建模。判别式模型有利于构建分类器或者回归分析生成式模型时需要对 X和 Y 同时建模,更适合做无监督学习分析。生成式模型:描述一个联合概率分布 P(X,Y)的分解过程,这个分解过程是虚拟的过程,真实的数据不是这么产生的,但是任何一个数据的产生过程可以在数学上等价为一个联合

一、面板数据优点1. 可以解决遗漏变量的问题:遗漏变量由于不可观测的个体差异或“异质性”造成的,如果这种个体差异“不随时间而改变”,则面板数据提供了解决遗漏变量问题的又一利器。2. 提供更多个体动态行为的信息:由于面板数据同时有横截面与时间两个维度,优势它可以解决单独的截面数据或时间序列数据所不能解决的问题。3. 样本容量较大:由于同时有截面维度与时间维度,通常面板数据的样本容量更大,从而可以提高
1. 何为聚类标准误标准误在统计推断中发挥着至关重要的作用,直接影响着系数的显著性和置信区间,并最终影响到假设检验的结论。因此,正确地估计标准误在实证分析的过程中显得尤为重要。当干扰项满足「独立同分布 (iid)」 条件时, OLS 所估计的标准误是无偏的。但是当误差项之间存在相关性时,OLS 所估计的标准误是有偏的,不能很好地反映估计系数的真实变异性 (Petersen, 2009),故需要对标
1. 剔除缺失数据在主回归文件有缺失内容时,剔除掉缺失值keep if _merge==3数据处理结束——删除因变量缺失的数据drop if missing(size, lev, growth, roa, cashflow, btom, largesthold,dyratio,dgjhold,dgjwage,ncskew,duvol,sigma,ret,ipoage,board,ind_board
严格来说,即使发表的论文,协变量在匹配后也不一定更加平衡,往往是某些变量的平衡性得到提升,而另一部分变量的平衡性有所下降。因此,我们介绍一种无需检查协变量平衡性、模型依赖度更低的匹配方法——Coarsened Exact Matching (广义精确匹配 \ 粗粒度精确匹配)。1. CEM原理介绍常用的 PSM 方法往往无法确保在匹配后提升平衡性,而 Coarsened Exact Matchin
Lasso是一种数据降维方法,该方法不仅适用于线性情况,也适用于非线性情况。Lasso是基于惩罚方法对样本数据进行变量选择,通过对原本的系数进行压缩,将原本很小的系数直接压缩至0,从而将这部分系数所对应的变量视为非显著性变量,将不显著的变量直接舍弃。了解Lasso之前我们需要了解的知识1.1 高维数据何谓高维数据?高维数据指数据的维度很高,甚至远大于样本量的个数。高维数据的明显的表现是:在空间中数
该模型是Probit模型的拓展,适用于模型中有两个结果变量且假定方程组的随机扰动项之间存在相关性,模型中的方程需同时进行估计。如果这两个二元变量的结果是不相关的,我们可以估计两个独立的 Probit 模型,如果这两个二元变量的结果是相关的,使用Probit 模型会导致估计结果偏差并影响结论,则需要使用 Bivariate Probit 模型。分别为标准化的二维正态分布的概率密度函数 (PDF) 和
一、为什么进行标准化处理在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指
1. 内生性来源内生性问题 (endogeneity issue) 是指模型中的一个或多个解释变量与误差项存在相关关系。换言之,如果 OLS 回归模型中出现,则模型存在内生性问题,以致于 OLS 估计量不再是一致估计。进一步,内生性问题主要由以下四种原因导致。1.1 遗漏变量在实证研究中,研究者通常无法控制所有能影响被解释变量的变量,因此遗漏解释变量 (omitted variables) 是很常
1. 什么是安慰剂检验随着「因果推断方法」在实证研究中的使用比例不断提升,越来越多的文章也会进行安慰剂检验。其检验基本原理与医学中的安慰剂类似,即使用「假的政策发生时间或实验组」进行分析,以检验能否得到政策效应。如果依然得到了政策效应,则表明基准回归中的政策效应并不可靠。进一步,经济结果可能是由其他不可观测因素导致的,而非关注的政策所产生。2. 为什么要进行安慰剂检验在实证研究中,无论是稳健性检验







