
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
Unsloth是一款专为大语言模型微调与强化学习设计的开源框架,致力于以更高的效率和更低的资源成本推动人工智能技术的普及。用户可在本地环境、Google Colab、Kaggle等平台上,借助其运算加速与显存优化能力,轻松完成Qwen、DeepSeek等主流大模型的训练、评估、保存及推理优化。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好

MarkItDown库是一款轻量级的Python版Markdown格式解析与渲染工具,能够将多种文件格式高效转换为Markdown格式,从而满足大语言模型(LLMs)及相关文本分析流程的需求。它专注于以Markdown格式精准保留文档的关键结构与内容,包括标题、列表、表格、链接等元素。虽然其输出结果既美观又易于人类用户阅读,但其核心设计宗旨是为文本分析工具提供支持,因此对于那些需要高保真度转换以供

文章目录1 简介1.1 深度学习与传统计算机视觉1.2 性能考量1.3 社区支持2 结论3 参考在计算机视觉领域中,不同的场景不同的应用程序需要不同的解决方案。在本文中,我们将快速回顾可用于在单板计算机(指所有的逻辑线路、定时线路、内部存储器和外部界面都包含在一块单独的印制板上的一种微算机)上提供嵌入式视觉的各种选项。近年来,随着计算机视觉领域的巨大进步和廉价计算的可用性,计算机视觉正处于一个转折
目录1基于CNN的性别分类建模原理1.1 人脸识别1.2 性别预测1.3 年龄预测1.4 结果2 代码参考本教程中,我们将讨论应用于面部的深层学习的有趣应用。我们将估计年龄,并从单个图像中找出该人的性别。模型由GilLevi和TalHassner训练(https://talhassner.github.io/home/publication/2015_CVPR)。本...
目录1 背景2 实现3. 结果和代码4 参考手部关键点检测是在手指上找到关节以及在给定图像中找到指尖的过程。它类似于在脸部(面部关键点检测)或身体(人体姿势估计)上找到关键点。但是手部检测不同的地方在于,我们将整个手部视为一个对象。美国卡耐基梅隆大学智能感知实验室(CMU Perceptual Computing Lab)发布了手的关键点检测模型。详情见:https:/...
任务类型定义特点应用场景示例长时预测预测时间序列在未来较长时间段内的变化趋势需要考虑长期趋势和季节性因素,使用复杂的模型来捕捉长期依赖性股票价格预测、长期能源需求预测等短时预测预测时间序列在近期的未来值通常关注短期波动,模型需要快速响应新数据短期销售预测、交通流量预测等缺失值填补填补时间序列中缺失的数据点需要保持时间序列的连续性和一致性时间序列预处理、历史数据补全等异常检测识别时间序列中的异常或离

目录1 介绍2 Ubuntu 18下ncnn安装和使用2.1 Ubuntu 18下ncnn编译安装2.2 Ubuntu 18下ncnn使用3 Windows 10下ncnn安装和使用3.1 Windows 10下ncnn编译安装3.2 Windows 10下ncnn使用4 参考1 介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第...
AutoDetectionModel类SAHI基于AutoDetectionModel类的from_pretrained函数加载深度学习模型。目前支持YOLOv5 models, MMDetection models, Detectron2 models和HuggingFace object detection models等深度学习模型库,如果想支持新的模型库,可以参考目录下的模型文件,新建模型

CCPD是一个大型的、多样化的、经过仔细标注的中国城市车牌开源数据集。CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集。CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌)。在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖。CCPD中的每幅图像都包含大量的标注信息,但是CCPD

Unsloth是一款专为大语言模型微调与强化学习设计的开源框架,致力于以更高的效率和更低的资源成本推动人工智能技术的普及。用户可在本地环境、Google Colab、Kaggle等平台上,借助其运算加速与显存优化能力,轻松完成Qwen、DeepSeek等主流大模型的训练、评估、保存及推理优化。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好








