
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
通过 Aloudata Agent,企业可以十分放心地拥抱 AI 问数革命,在加速数据驱动决策的同时,确保核心数据资产固若金汤。

如何确保 ChatBI 的查询结果准确可信?如何避免大模型“幻觉”和数据口径不一致?如何实现从“是什么”到“为什么”再到“怎么做”的完整分析闭环?

用户无需关心底层是明细表还是汇总表,Aloudata Agent 会自动选择最佳路径,确保查询性能最优

这种个性化定制能力,使得 HR、财务、区域经理等不同部门能够拥有专属的 AI 数据分析工具,满足其独特的分析需求。

言必称 AI 的 2025 年即将过去,这一年里大数据领域的“顶流”毫无疑问是 ChatBI/Data Agent。岁末肯定要展望未来,于是,带着好奇,我们问了大模型几个问题:
当 ChatBI 的准确率不断提升,其价值将从“效率工具”升级为“决策中枢”。Aloudata Agent 分析决策智能体通过 NL2MQL2SQL 技术路径,可解决大模型在数据分析场景中的“幻觉”问题

2025 年,每家企业都想拥有自己的 Data Agent,但 90% 的项目可能不是死在 Demo 阶段就是建成后无人问津。为什么?

企业数字化转型的关键新目标是实现业务自助用数

此时此刻,站在 Data 和 AI 的十字路口,我不禁扪心自问:是创造还是涅灭,大数据如何通往大模型,数据资产如何成为 AI 资产?是廿年戎马终归碌碌无为,还是四载厚积一朝破茧成蝶——让 Aloudata 成为大数据通往大模型的钥匙,开启数据智能变革的黄金十年。

在与客户的共创中,我们发现数据团队仍被困在周报、月报的重复劳动中,AI 生成的报告往往结构松散、缺乏深度,无法直接使用。这引发我们对智能分析范式的重新思考,推出了 「智能融合报告」,确立了一种新的协作方式:您作为“总设计师”编排思路,AI 作为“超级工匠”精准执行。通过这种方式,您能够将业务经验融入分析框架,全程掌控生成过程,获得结构严谨、洞察深入且可复用的分析成果。如果您在寻找更高效、更可控的智








