
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
多智能体强化学习被应用于基于无人机的通信网络(UCNs),以有效解决时间耦合的顺序决策问题,同时实现可扩展性。本项目研究了UCN中的分布式用户连接最大化问题,旨在设计轨迹以在时间范围内最优地引导无人机的运动,从而最大化累积连接用户的数量。

本文提出一种“模型预测控制(MPC)+ 滚动时域估计(MHE)”一体化框架,旨在解决在传感器和执行器双重噪声环境下,将移动机器人稳定到指定目标点 xs 的问题。与现有研究仅单独考虑状态或控制噪声、且将估计与控制分步求解的做法不同,本文创新性地把传感器噪声和执行器噪声同时纳入联合优化,实现了真正意义上的“估计–控制闭环”。采用多重打靶法将 MPC 问题转化为非线性规划(NLP),并利用 CASAD
结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。技术优势提高可再生能源渗透率,减少弃风弃光现象。通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。控制架构集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。非对称纳什谈判理论为多微网电能共享提供了兼顾效
本文聚焦无模型自适应预测控制(MFAPC)与无模型自适应迭代学习控制(MFAILC)的数值验证仿真研究。通过构建基于紧致形式动态线性化(CFDL)的仿真程序,分别验证了MFAPC在非线性系统预测跟踪中的有效性,以及MFAILC在非线性系统迭代轨迹跟踪中的性能。仿真结果表明,两种方法均能有效处理非线性系统控制问题,为复杂工业过程的控制提供了新的思路。
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由
视觉惯性数据融合在室内导航中的核心价值在于互补纠偏与环境适应性。通过紧耦合算法、多传感器冗余及深度学习优化,系统在复杂场景下的定位误差可控制在1%以内(如100米路径误差<1米)。随着MEMS传感器精度的提升(如下一代陀螺仪零偏不稳定性目标<5°/hr),以及边缘AI算力的发展,智能手机将成为室内外无缝导航的关键载体。📚2 运行结果部分代码:i=0;i=i+1;endfrq=30;🎉3参考文献
二维栅格地图路径规划在机器人导航、智能物流等领域至关重要。传统算法在复杂动态环境中存在局限性,海市蜃楼搜索优化(MSO)算法虽展现出一定优势,但仍需改进。本文提出将精英反向策略与免疫思想融入MSO算法,应用于二维栅格地图路径规划。通过精英反向学习生成多样化种群,利用免疫思想的克隆、变异操作增强算法局部搜索能力。实验结果表明,改进后的算法在静态和动态栅格环境中,路径长度更短、避障成功率更高、收敛速度
二维栅格地图路径规划在机器人导航、智能物流等领域至关重要。传统算法在复杂动态环境中存在局限性,海市蜃楼搜索优化(MSO)算法虽展现出一定优势,但仍需改进。本文提出将精英反向策略与免疫思想融入MSO算法,应用于二维栅格地图路径规划。通过精英反向学习生成多样化种群,利用免疫思想的克隆、变异操作增强算法局部搜索能力。实验结果表明,改进后的算法在静态和动态栅格环境中,路径长度更短、避障成功率更高、收敛速度
目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基







