AI从固定框架到动态组装的神经网络
AI的必经之路
静态名词系统:
# 传统方式:固定网络架构
import torch.nn as nn
class StaticNeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(100, 50) # 固定结构
self.layer2 = nn.Linear(50, 10)
def forward(self, x):
x = self.layer1(x) # 总是全量计算
x = self.layer2(x)
return x
动态动词系统
# 新方式:基于输入条件动态组装计算路径
class DynamicNeuralArchitecture(nn.Module):
def __init__(self):
super().__init__()
# 创建多个可选的处理器(专家模块)
self.experts = nn.ModuleDict({
'simple_processor': nn.Linear(100, 10),
'complex_processor': nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 10)
),
'specialized_processor': nn.Sequential(
nn.Linear(100, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 10)
)
})
# 元控制器:决定使用哪个专家
self.meta_controller = nn.Linear(100, 3)
def forward(self, x, compute_budget=0.5):
# 第一步:元控制器分析输入条件
control_scores = self.meta_controller(x.mean(dim=1))
expert_weights = torch.softmax(control_scores, dim=1)
# 第二步:基于条件和计算预算选择专家
selected_experts = self.select_experts_by_conditions(
expert_weights, compute_budget, x
)
# 第三步:动态组装计算路径
output = torch.zeros_like(x[:, :10])
total_compute_cost = 0
for expert_name, weight in selected_experts:
if total_compute_cost < compute_budget:
expert_output = self.experts[expert_name](x)
output += weight * expert_output
total_compute_cost += self.get_compute_cost(expert_name)
return {
'output': output,
'expert_usage': selected_experts,
'compute_cost': total_compute_cost,
'adaptation_log': f"基于输入条件选择了{len(selected_experts)}个专家"
}
def select_experts_by_conditions(self, weights, budget, x):
# 基于输入特征和计算预算选择专家
experts_with_weights = []
available_budget = budget
# 按权重排序,在预算内选择专家
sorted_experts = sorted(zip(['simple_processor', 'complex_processor',
'specialized_processor'], weights[0]),
key=lambda x: x[1], reverse=True)
for expert_name, weight in sorted_experts:
cost = self.get_compute_cost(expert_name)
if cost <= available_budget and weight > 0.1:
experts_with_weights.append((expert_name, weight))
available_budget -= cost
return experts_with_weights
更多推荐
所有评论(0)