AI从规则执行,到环境适应3
AI的必经之路
静态名词系统:
# 传统方式:固定行为树
class StaticGameAI:
def decide_action(self, game_state):
if game_state['health'] < 0.3:
return "flee"
elif game_state['has_target']:
return "attack"
return "patrol"
动态动词系统
# 新方式:基于环境条件动态调整策略
class DynamicGameAI:
def __init__(self):
self.behavior_weights = {
'aggressive': 0.5,
'defensive': 0.3,
'explorative': 0.2
}
self.adaptation_rate = 0.1
def decide_dynamic_action(self, game_state, history):
# 计算当前环境条件下的最优行为混合
current_conditions = self.analyze_environmental_conditions(game_state)
# 基于历史结果调整行为权重(学习/适应)
self.adapt_behavior_weights(history, current_conditions)
# 生成基于当前条件的行为概率分布
action_probs = self.calculate_action_probabilities(current_conditions)
# 选择最能适应当前条件的行为
chosen_action = self.select_adaptive_action(action_probs, game_state)
return {
'action': chosen_action,
'strategy_mix': self.behavior_weights,
'adaptation_reason': current_conditions['dominant_factor']
}
def analyze_environmental_conditions(self, game_state):
conditions = {}
# 分析各种环境因素(条件)
conditions['threat_level'] = self.calculate_threat_level(game_state)
conditions['resource_availability'] = self.assess_resources(game_state)
conditions['strategic_advantage'] = self.evaluate_advantage(game_state)
# 找出主导条件
dominant_factor = max(conditions, key=conditions.get)
conditions['dominant_factor'] = dominant_factor
return conditions
def adapt_behavior_weights(self, history, current_conditions):
# 基于历史结果调整行为:成功的策略权重增加
recent_successes = self.analyze_recent_outcomes(history)
for strategy, success_rate in recent_successes.items():
adjustment = success_rate * self.adaptation_rate
self.behavior_weights[strategy] += adjustment
# 归一化权重
total = sum(self.behavior_weights.values())
self.behavior_weights = {k: v/total for k, v in self.behavior_weights.items()}
更多推荐
所有评论(0)