
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
--现代计算之父肯定会向 ChatGPT 张开双臂。

时序预测模型——LSTNet

生成式对抗网络模型综述作者:张真源GANGAN简介生成式对抗网络(Generative adversarial networks,GANs)的核心思想源自于零和博弈,包括生成器和判别器两个部分。生成器接收随机变量并生成“假”样本,判别器则用于判断输入的样本是真实的还是合成的。两者通过相互对抗来获得彼此性能的提升。判别器所作的其实就是一个二分类任务,我们可以计算他的损失并进行反向传播求出梯度,从而进

文本挖掘之LDA主题模型作者:郑培引言主题模型是文本挖掘的重要工具,近年来在工业界和学术界都获得了非常多的关注。在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model)能够识别在文档里的主题,并且挖掘语料里隐藏信息,并且在主题聚合、从非结构化文本中提取信息、特征选择等场景有广泛的用途。Latent Dirichl....

【技术博客】浅谈联邦半监督学习及FedMatch算法作者:余敏君1 前言以往的联邦学习工作往往仅专注于对监督学习任务的研究,即要求所有的数据都必须包含相应的标签。但是,在现实场景中,考虑到大数据量标注任务所需要的人力和物力开销是非常大的,因此本地客户端所包含的数据常常大部分甚至全部都是没有相应标签信息的。为了解决上述问题,大量新的学习范式应运而生。这其中,半监督学习作为一种解决标签数据量小问题的有

1. 介绍1.1 Deep NLP自然语言处理(Natural Language Processing,NLP)是计算机科学、人工智能和语言学领域交叉的分支学科,主要让计算机处理或理解自然语言,如机器翻译,问答系统等。但是因其在表示、学习、使用语言的复杂性,通常认为 NLP 是困难的。近几年,随着深度学习(Deep Learning, DL)兴起,人们不断尝试将 DL 应用在 NLP 上,被...
残差网络残差网络(Residual Network简称ResNet)是在2015年继Alexnet Googlenet VGG三个经典的CNN网络之后提出的,并在ImageNet比赛classification任务上拔得头筹,ResNet因其简单又实用的优点,现已在检测,分割,识别等领域被广泛的应用。 ResNet可以说是过去几年中计算机视觉和深度学习领域最具开创性的工.

胶囊网络——Capsule Network作者:林泽龙1. 背景介绍CNN 在处理图像分类问题上表现非常出色,已经完成了很多不可思议的任务,并且在一些项目上超过了人类,对整个机器学习的领域产生了重大的影响。而 CNN 的本质由大量的向量和矩阵的相乘或者相加,因此神经网络的计算消耗非常大,所以将一张图片上全部像素信息传递到下一层运算是十分困难的,所以出现了“卷积”和“池化”这种方法,能够在不损...

案例引入某银行A与某互联网公司B达成了企业级的合作。互联网公司A与银行B有着一大部分重合的用户,A有着客户上网行为等特征信息。B有着客户的存贷情况等特征信息以及客户的标签信息——客户的还贷情况(Y)。B希望能够将他所独有的特征信息与A所独有的特征信息相结合,训练出一个更强大的识别客户信用风险的模型,但由于不同行业之间的行政手续,用户数据隐私安全等因素,企业A,B无法直接互通数据,联邦学习应运而生。

作者:王镇引言1873年的一个春日,在阿让特伊的塞纳河畔,莫奈用纤细的笔触和明亮的调色板记录下了眼前塞纳河畔美丽的田园风光。我们不免想象如果当时有相机的话,会留下一张怎样的照片呢。在一个凉爽的夏日傍晚,面对卡西斯港口的美丽景色,我们拿起相机时是否又会想象莫奈会如何来记录眼前的此番景象呢。尽管我们没有看到莫奈画作的场景照片,在有了一组莫奈风格画作和真实风景照片后,利用 CycleGan,我们能...








