
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
在强化学习(RL)领域,如何稳定地优化策略是一个核心挑战。2015 年,由 John Schulman 等人提出的信赖域策略优化(Trust Region Policy Optimization, TRPO)算法为这一问题提供了优雅的解决方案。TRPO 通过限制策略更新的幅度,避免了策略更新过大导致的不稳定问题,是强化学习中经典的策略优化方法之一。TRPO 是一种基于策略梯度的优化算法,其目标是通

随机网络蒸馏(RND)是一种自监督学习方法,旨在提高强化学习中的探索效率。该算法由 Chesney et al. 在论文《Random Network Distillation as a Method for Intrinsic Motivation》提出,RND 利用随机神经网络的输出与环境状态的真实特征之间的差异来生成内在奖励,鼓励智能体探索未见过的状态。这种方法尤其适用于外部奖励稀疏的环境。

解耦表示学习,Decoupled Representation Learning (DRL) 是一种用于在自监督强化学习(Self-Supervised Reinforcement Learning, SSRL)中学习解耦表示的算法。DRL旨在通过将表示学习和策略学习过程分离,以实现更高效的学习。该算法适用于许多强化学习场景,特别是在高维观测(如图像、视频等)中,有效提取低维、独立的状态表示,帮助

多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)在许多应用场景中面临巨大挑战,如智能体之间的协作、竞争以及在复杂环境中的策略优化。在多智能体系统中,如何让各个智能体有效协作、合理分工,最大化整体性能是一个核心问题。面向角色的多智能体强化学习(Role-Oriented Multi-Agent Reinforcement Learning, ROM

REINFORCE 是一种策略梯度算法,用于强化学习中的策略优化问题。它的核心思想是直接优化策略,通过采样环境中的轨迹来估计梯度并更新策略。PG(Policy Gradient)算法是一个更大的算法框架,而 REINFORCE 是 PG 算法的一种具体实现。因此,比较两者的关键在于 PG 的普适性和 REINFORCE 的具体特性。

强化学习中的深度Q网络(DQN)是一种将深度学习与Q学习结合的算法,它通过神经网络逼近Q函数以解决复杂的高维状态问题。然而,DQN存在过估计问题(Overestimation Bias),即在更新Q值时,由于同时使用同一个网络选择动作和计算目标Q值,可能导致Q值的估计偏高。Double DQN(DDQN)引入了“双网络”机制来缓解这个问题,从而提高了算法的稳定性和收敛性。

Sarsa算法是一种强化学习(Reinforcement Learning, RL)的经典算法,属于时序差分(Temporal Difference, TD)方法。它是一种基于策略的学习算法,用于解决马尔可夫决策过程(Markov Decision Process, MDP)中的问题。简单来说,Sarsa的目标是通过不断地交互,学习如何从当前状态选择最优动作,从而获得最大的累积奖励。

在强化学习(Reinforcement Learning, RL)中,智能体通过与环境的交互来学习一个策略,以最大化长期累积回报。然而,传统的强化学习算法在优化回报时往往不考虑智能体行为的安全性,导致在训练或部署过程中可能出现不安全的行为。**安全强化学习(Safe Reinforcement Learning,Safe RL)**正是在此背景下提出的,它旨在在优化回报的同时确保智能体的行为符合某

分层强化学习(Hierarchical Reinforcement Learning, HRL)通过将复杂问题分解为更小的子问题,显著提高了强化学习算法在解决高维状态空间和长期目标任务中的效率。Option-Critic架构是分层强化学习中一种非常有影响力的方法,专门用于自动发现和优化子策略(称为“Option”)。它是在经典的Options框架基础上提出的,用来处理分层决策问题,特别是可以在没有

演员评论家,Actor-Critic算法是强化学习领域的一种重要方法,结合了“演员”(Actor)和“评论家”(Critic)两个部分,它结合了值函数估计和策略优化的优点。在理解其背景时,需要从强化学习的演化历史、策略梯度方法的局限性以及如何通过值函数辅助优化策略展开。文章用一个生活中的比喻来说明它的原理。








