
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
日期问题见名知意,就是有关时间的问题,出题人在时间这一个角度去做文章,现在来看各大刷题网站,什么样的时间问题都有,比如闰年判断、回文日期、日期差值、日期格式化输入输出、时间轮询、时间窗口问题等。可所谓眼花缭乱,但是有的时间问题感觉就是图一乐,但是不排除创新题的可能性,后续也没有什么作用,既不会考也不会出在面试题上,下面我会对几种常见的日期问题进行详解。

弗洛伊德算法(Floyd's algorithm),又称为弗洛伊德-沃尔什算法(Floyd-Warshall algorithm),是一种用于在加权图中找到所有顶点对之间最短路径的算法。这个算法适用于有向图和无向图,并且可以处理负权重边,但不能处理负权重循环。

迪杰斯特拉(Dijkstra)算法是一种用于在加权图中找到单个源点到所有其他顶点的最短路径的算法。它是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Dijkstra)在1956年提出的。Dijkstra算法适用于处理带有非负权重的图。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

连通块问题(Connected Component Problem)是一个经典的图论问题,通常用来找出图中的所有连通分量。给定一个无向图,连通块问题的目标是确定图中有多少个连通分量(即有多少个互相连通的节点组成的集合)

一个8×8的棋盘上有一个马初始位置为(a,b),他想跳到(c,d),问是否可以?如果可以,最少要跳几步?本人小白一枚,能力有限,希望各位大佬理解。本文有错误的地方请指出,共同进步,如果跳不到,输出-1;否则输出最少跳到的步数。0
K近邻算法(K-Nearest Neighbors, KNN)是一种简单但非常实用的监督学习算法,主要用于分类和回归问题。KNN 基于相似性度量(如欧几里得距离)来进行预测,核心思想是给定一个样本,找到与其最接近的 K 个邻居,根据这些邻居的类别或特征对该样本进行分类或预测。

它是一种贪心算法,信息增益表示按某特征划分数据集前后信息熵的变化量,变化量越大,表示使用该特征划分的效果越好。:这个实现是为了教学目的而简化的,实际应用中通常会使用更高级的库和算法,如 scikit-learn 中的 DecisionTreeClassifier。C4.5是ID3的改进版,使用信息增益比替代信息增益作为特征选择标准,从而克服了ID3倾向于选择多值特征的缺点。

随机森林(Random Forest)是一种集成学习方法,它通过构建多个决策树来进行分类或回归预测。随机森林的核心思想是“集思广益”,即通过组合多个模型来提高预测的准确性和鲁棒性。

深度优先搜索(Depth-First Search,简称DFS)是一种用于遍历或搜索树或图的算法。这种算法会尽可能深地搜索图的分支,直到找到目标节点或达到叶节点(没有子节点的节点),然后回溯到上一个分支继续搜索。









